

Journal of

Visual Language and

Computing

Volume 2019, Number 1

Copyright ⓒ 2019 by KSI Research Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written consent of the publisher.

DOI: 10.18293/JVLC2019-N1

ISSN: 2573-7147 (online)

Journal preparation, editing and printing are sponsored by KSI Research Inc.

 i

Journal of

Visual Language and Computing

Editor-in-Chief
Shi-Kuo Chang, University of Pittsburgh, USA

Co-Editors-in-Chief

Gennaro Costagliola, University of Salerno, Italy

Paolo Nesi, University of Florence, Italy

Gem Stapleton, University of Brighton, UK

Franklyn Turbak, Wellesley College, USA

An Open Access Journal published by

KSI Research Inc.

156 Park Square Lane, Pittsburgh, PA 15238 USA

 ii

JVLC Editorial Board

Tim Arndt, Cleveland State University, USA

Paolo Bottoni, University of Rome, Italy

Francesco Colace, University of Salerno, Italy

Maria Francesca Costabile, University of Bari, Italy

Philip T. Cox, Dalhousie University, Canada

Martin Erwig, Oregon State University, USA

Andrew Fish, University of Brighton, United Kingdom

Vittorio Fuccella, University of Salerno, Italy

Angela Guercio, Kent State University, USA

Erland Jungert, Swedish Defence Research Establishment, Sweden

Kamen Kanev, Shizuoka University, Japan

Robert Laurini, University of Lyon, France

Jennifer Leopold, Missouri University of Science & Technology, USA

Mark Minas, University of Munich, Germany

Brad A. Myers, Carnegie Mellon University, USA

Joseph J. Pfeiffer, Jr., New Mexico State University, USA

Yong Qin, Beijing JiaoTung University, China

Genny Tortora, University of Salerno, Italy

Kang Zhang, University of Texas at Dallas, USA

Journal Production Associate Editors

Jorge-Luis Pérez-Medina, Universidad de Las Américas, Ecuador

Yang Zou, Hohai University, China

 iii

Journal of

Visual Language and Computing
Volume 2019, Number 1

September 2019

Table of Contents

A New Beginning for JVLC.iv

Papers published by the Journal of Visual Languages and Sentient Systems VLSS 2015-2018vi

Regular Papers

A Mathematical Language for the Modeling of Geospatial Static Rules. 1
Robert Laurini

Context Computation for Implicit Context-Sensitive Graph Grammars: Algorithms and
Complexities … 15
Yang Zou, Xiaoqin Zeng and Yufeng Liu

CROSSIDE: A Design Space for Characterizing Cross-Surface Collaboration by Sketching. …. . . . 29
Jorge-Luis Pérez-Medina, Jean Vanderdonckt and Santiago Villarreal-Narvaez

Collaborative E-learning Environments with Cognitive Computing and Big Data….……... 43
Mauro Coccoli, Paolo Maresca and Andrea Molinari

Comprehension of Software Architecture Evolution Supported by Visual Solutions: A Systematic Mapping and a
Proposed Taxonomy. ….. ….. ….. ….. …. 53
Joao Werther Filho, Glauco Carneiro and Rita Maciel

 iv

A NEW BEGINNING FOR JVLC

We proclaim a new beginning for the Journal of Visual Language and Computing, which is intended to be a
forum for researchers, practitioners and developers to exchange ideas and research results, for the
advancement of visual languages, visual computing and sentient multimedia systems. Sentient systems are
distributed systems capable of actively interacting with the environment by gathering, processing,
interpreting, storing and retrieving multimedia information originated from sensors, robots, actuators,
websites and other information sources. In order for sentient systems to function efficiently and effectively,
visual languages and visual computing play an important role.

The original Journal of Visual Languages and Computing was founded in 1980 by me. Together with Dr.
Stefano Levialdi, we served as the Founding Co-Editors of JVLC and established JVLC as a high quality,
first rate research journal. In 2015 I founded another journal, the Journal of Visual Languages and Sentient
Systems (VLSS), to encompass the new research area of sentient systems. In 2019 the publisher of JVLC
decided not to continue the publication of JVLC. To continue the tradition of JVLC and incorporate the new
research area of sentient systems, but to avoid any possible conflicts, I obtained the permission from this
publisher to merge VLSS with JVLC and publish the journal under a slightly different name, i.e., Journal of
Visual Language and Computing. KSI Research Inc., which is a non-profit tax exempt company founded by
me to conduct scientific research, organize conferences and publish academic journals and books, became
the publisher of the new JVLC.

Although the name change from Visual Languages and Computing to Visual Language and Computing is
dictated by necessity, it also connotes a new beginning. The plural form of visual languages suggests unity
through diversity. The singular form of visual language suggest diversity through unity, which is consistent
with the spirit of merging JVLC and VLSS. In our world, we have witnessed the rapid growth of Internet
and sensor-based systems. Thus it is now possible to model the entire world, or at least a significant portion
of the world. At the same time the deterioration of the global environment and the depletion of resources
call for a deeper understanding of our world by modeling and simulation. Visual languages and
visualization will play a very important role in human’s efforts to model the world and run simulation
experiments, in order to deal with the problems mentioned above. Thus JVLC has both a new beginning
and also an urgent mission.

JVLC publishes research papers, state-of-the-art surveys, review articles, in the areas of visual languages,
sentient multimedia systems, distributed multimedia systems, sensor networks, multimedia interfaces, visual
communication, multi-media communications, cognitive aspects of sensor-based systems, and
parallel/distributed/neural computing & representations for multimedia information processing. Papers are
also welcome to report on actual use, experience, transferred technologies in sentient multimedia systems
and applications. Timely research notes not to exceed ten pages and viewpoint articles, book reviews and
tool reviews not to exceed three pages can also be submitted to JVLC.

Manuscripts shall be submitted electronically to jvlc@ksiresearch.org. Original papers only will be
considered. Manuscripts should follow the double-column format and be submitted in the form of a pdf file.
Page 1 should contain the article title, author(s), and affiliation(s); the name and complete mailing address
of the person to whom correspondence should be sent, and a short abstract (100-150 words). Any footnotes
to the title (indicated by *, +, etc.) should be placed at the bottom of page 1.

 v

Manuscripts are accepted for review with the understanding that the same work has not been and will not be
nor is presently submitted elsewhere, and that its submission for publication has been approved by all of the
authors and by the institution where the work was carried out; further, that any person cited as a course of
personal communications has approved such citation. Written authorization may be required at the Editor's
discretion. Articles and any other material published in JVLC represent the opinions of the author(s) and
should not be construed to reflect the opinions of the Editor(s) and the Publisher. For further information
contact: jvlc@ksiresearch.org

Shi-Kuo Chang, Editor-in-Chief, JVLC

 vi

Papers published by the Journal of Visual Languages and Sentient Systems

VLSS 2015-2018

Volume 1, 2015

Regular Papers

Nurcan Gecer Ulu and Levent Kara, “Generative Interface Structure Design for Supporting Existing Objects”

Gennaro Costagliola, Mattia De Rosa and Vittorio Fuccella, “Fast prototyping of visual languages using local context-
based specifications”

Castellano Giovanna, Fanelli Anna Maria and Torsello Maria Alessandra, “Incremental indexing of objects in
pictorial databases”

Gennaro Costagliola, Mattia De Rosa and Vittorio Fuccella. RankFrag: A Machine Learning-Based Technique for
Finding Corners in Hand-Drawn Digital Curves”

Vincenzo Del Fatto, Vincenzo Deufemia, Luca Paolino and Sara Tumiati, “WiSPY: A Tool for Visual Specification
and Verification of Spatial Integrity Constraints”

Guoqiang Cai, “GO-Bayes Method for System Modeling and Safety Analysis”

Research Notes

Fabio Pittarello, “Testing a Storytelling Tool for Digital Humanities”

Luca Greco, Francesco Colace, Vincenzo Moscato, Flora Amato and Antonio Picariello, “A Quick Survey on
Sentiment Analysis Techniques: a lexical based perspective”

Volume 2, 2016

Regular Papers

Flora Amato, Vincenzo Moscato, Antonio Picariello and Giancarlo Sperlì, “Recommender Systems and Social
Networks: An Application in Cultural Heritage”

Jennifer Leopold, Nathan Eloe and Chaman Sabharwal, “VisCFSM: Visual, Constraint-Based, Frequent Subgraph
Mining”

Gennaro Costagliola, Mattia De Rosa, Andrew Fish, Vittorio Fuccella, Rafiq Saleh and Sarah Swartwood, “A Toolkit
for Knot Diagram Sketching, Encoding and Re-generation”

Enrica Pesare, Teresa Roselli and Veronica Rossano, “Visualizing Student Engagement in e-learning Environment”

 vii

Paolo Maresca and Andrea Molinari, “Is e-learning Ready for Big Data? And How Big Data Would Be Useful to e-
learning ?”

Rita Francese, Carmine Gravino, Michele Risi, Giuseppe Scanniello and Genoveffa Tortora, “Supporting Mobile
Development Project-Based Learning by Software Project and Product Measures”

Mehdi Ghayoumi, Arvind Bansal and Maha Thafar, “Towards Formal Multimodal Analysis of Emotions for Affective
Computing”

Yanfang Yang and Yong Qin, “Parameter Calibration Method of Microscopic Traffic Flow Simulation Models based
on Orthogonal Genetic Algorithm”

Volume 3, 2017

Franklyn Turbak, “Guest Editor’s Introduction to the VLSS Special Issue on Blocks Programming”

Regular Papers

Miguel Ceriani and Paolo Bottoni, “SparqlBlocks: Using Blocks to Design Structured Linked Data Queries”

Michael Homer and James Noble, “Lessons in combining block-based and textual programming”

Michael Knolling, Neil Brown and Amjad Altadmri, “Between blocks and text: A design of program manipulation
interactions”

Alexander Repenning, “Moving Beyond Syntax: Lessons from 20 Years of Blocks Programing in AgentSheets”

Michelle Ichinco, Kyle Harms and Caitlin Kelleher, “Towards Understanding Successful Novice Example Use in
Blocks-Based Programming”

David Weintrop and Uri Wilensky, “How block-based languages support novices: A Framework for categorizing
block-based a_ordances”

Research Notes

Stephanie Ludi and Mary Spencer, “Design Considerations to Increase Block-based Language Accessibility for Blind
Programmers Via Blockly”

Volume 4, 2018

Regular Papers

Jennifer Leopold, Nathan Eloe, Jeff Gould and Eric Willard, “A Visual Debugging Aid based upon Discriminative
Graph Mining”

Xiaoqin Zeng, Yufeng Liu, Zhan Shi, Yingfeng Wang, Yang Zou, Jun Kong and Kang Zhang, “An Edge-based Graph
Grammar Formalism and its Support System”

 viii

Gem Stapleton, Lopamudra Choudhury and Mihir Chakraborty, “Spider Diagrams with Absence: Inference Rules for
Clutter Reduction”

Soraia M. Alarcão, Ruben Pavão and Manuel J. Fonseca, “Dominant Colors as Image Content Descriptors: A Study
with Users”

Soraia M. Alarcão and Manuel J. Fonseca, “Enriching Image Datasets with Unrestrained Emotional Data: A Study
with Users”

Shi-Kuo Chang, Cuiling Chen, Wei Guo and Nannan Wen, “Event-Based Data Input, Modeling and Analysis for
Meditation Tracking using TDR System”

Research Notes

Walter Balzano and Silvia Stranieri, “A Logic User-Based Algorithm to Improve Node Distribution in Wireless
Sensor Network”

Marazzini, Nicola Mitolo, Paolo Nesi and Michela Paolucci, “Smart City Control Room Dashboards: Big Data
Infrastructure, from data to decision support”

 R. Laurini / Journal of Visual Language and Computing (2019) 1-13

DOI reference number: 10.18293/JVLC2019N1-020

A Mathematical Language for the Modeling of Geospatial Static
Rules
Robert Laurinia

aKnowledge Systems Institute, USA, and University of Lyon, France
__

A R T I C L E I N F O

Article History:
Submitted 4.8.2019
Revised 8.8.2019
Second Revision 5.20.2019
Accepted 8.15.2019

Keywords:
Geographic knowledge
Geographic rules
Formal grammar
Smart cities

A B S T R A C T

More and more in information technologies, rules are considered as first-class citizens; and many
applications in business intelligence are built on rules. But in territorial intelligence and in smart city
planning, few works have been done in this direction. The role of this paper is to show the importance of
geographic rules and to propose, beyond the modeling in natural language, a mathematical language to
model them. This language is primary based on logic and set theory in which some relations and operators
coming from topology, computational geometry and operation research are integrated, and will cover only
static rules. By mathematical language, one means that it is independent from any software product or and
application, and its formal grammar is presented by means of syntactic diagrams. Several examples are
provided especially in urban planning.

 © 2019 KSI Research

1. Introduction

According to Graham [6] and Morgan [14], rules must
be considered as first-class citizens in information
technologies, meaning first that several computer-based
activities must be revisited. By definition, a rule is a
sequence antecedents-implication-consequents which can
be noted by (A) Þ (B), in which A is a conjunction of
conditions. Instead of antecedents, sometimes the
expression ‘premise’ is used. In logic, B can be either a
disjunction of conditions or a set of assertions. They come
from the so-called Horn clauses which are also the basis
of logic programming, where it is common to write
definite clauses in the form of an implication: (p ∧ q ∧ ...
∧ t) Þ u.

However, in urban planning, rules are essentially
coming from laws and by-laws. Moreover, some experts
can use other rules in their daily practice, sometimes

called best practices. In addition to that, more and more
specialists in spatial data mining analytics can discover
what they call associative rules.

In the knowledge society, in smart city management, it
is important not only to identify rules, but also to combine
them to automate reasoning. Facing this objective, the
scope of this paper is to propose a language in order to
model rules. Indeed, rules are often made explicit in
natural language; two main sources will be used, namely
rules written in natural language and associative rules as
extracted from data mining. This language will be based
on mathematics without taking into account practical
implementation. In other words, this is not a computer
language (code). Voluntarily, this paper will not deal with
3D issues, neither with temporal issues: only geographic
static rules will be considered.

This paper is organized as follows. First, some elements
will be given to explain the role of rules in computing, and
especially in geoprocessing. Then the formal grammar of
this mathematical language will be detailed. Finally,
examples especially in urban planning, will clarify the
expressive power of this language.

Journal of Visual Language and Computing

journal	homepage: www.ksiresearch.org/jvlc/

aCorresponding author
Email address: Roberto.Laurini@gmail.com
Website: http://www.laurini.net/robert/
ORCID: 0000-0003-0426-4030

1

R. Laurini/ Journal of Visual Language and Computing (2019) 1-13

2. About rules in IT

In this section, the importance of rules will be rapidly
emphasized in Business Intelligence. In Business
Intelligence, generally, their implementation is based on
two grammatical structures IF-THEN-Fact and IF-THEN-
Action (Ross [16]). The first serves above all to involve
new facts, that is new objects, attribute values, new
relationships between objects. As to the second, it is to
involve new actions. But who will be in charge of such
new actions? In some cases, the computer itself may run
procedures or send a message to other devices; in others,
particularly in regulatory contexts, a decision maker (for
example, the CEO of a company) must himself initiate the
action. Another interpretation could be that the choice of
alternatives of an action, for example when a law, in some
well-defined contexts, opens many perspectives. Thus, a
rule is a basic element of a strategy to build reasoning. In
contrast to algorithms, they are expressed declaratively.
Among business rules, Dietz [3] distinguishes between
three categories:
 rejectors typically those related to quality control,

that allow a rejection (rejection rules),
 producers such as those determining new values (ex

VAT calculation); they can be considered as rules of
production of information,

 and projectors such as those related to the
replenishment of stocks.

To conclude this section, let us mention that lots of
business applications are based on rules, and several
computer languages for encoding business rules have
been proposed, as XML extensions, such as SWRL
(Espinasse, [5]) or RuleML (Boley [1], Boley et al. [2]).
The simplest of those extensions is as follows:
<Implies>
 <if>
<..>
 </if>
 <then>
 <..>
 </then>
</Implies>

Also, very recently, a visual language has been proposed
such as by Pittl et al. [15], based on SWRL.

3. Rules in geoprocessing

In contrast, concerning geographic sciences and their
applications, few works have been done in the spirit of
knowledge engineering. However, let us mention Malerba
et al. [13], Salleb-Aouissi et al. [18] and Varadharajulu et
al. [22].

 From spatial data mining, for instance, Malerba et al.
(2003) have discovered the following rule:

is_a (X, large_town) intersects (X, Y) is_a (Y,

road)

Intersects (X, Z) is_a (Z, road) Z Y (91 %, 85 %).

 Which states that ‘If a large town X intersects a road Y,
then X intersects a road Z distinct from Y with 91%
support and 85% confidence’. In other words, one can say
that is_a allows a kind of definition, intersects a relation
and an additional condition.

Salleb-Aoussi et al. [18] have studied geology and
mineral deposits in South America. They extended the
existential and universal quantifiers (,) by
incorporating buffer zones (here 5 km), and have
proposed rules such as:

Mines – ∃ହ
ଷ Faults True

Mines – ∃ଵ
ଵ

 Volcano (active=yes)

The first rule means that there exist at least 3 faults
within 5 km of a target object (mineral deposits), whereas
the second states that there exists at least one active
volcano within 1 km of a target object. They also propose
to write ହ

଼% for considering 80% of items with 5 km.
Remark that the distance is taken as a modification of the
quantifiers. As it could be nice for colocation rules, other
extensions must be defined for other relations coming
from topology or computational geometry.

However, Varadharajulu et al. have proposed the
following rule for checking road length against road type
by using SWRL (remark that the length is given as a data,
not computed from computational geometry); more
exactly, a road less than 200 m long must be called a
"close":

NEWROAD(?R1), ROADSUFFIX(?R1, ?T1),
hasLength(?R1, ?200), SameAs (?T1, ?Close)

-> isAllowed(?R1, true)

All those three examples illustrate the difficulties to
incorporate issues coming from topology and
computational geometry. Indeed, the governance of smart
cities must be based on both artificial intelligence and
collaborative human intelligence. New domains such as
sensors networks, big data, deep learning,
geovisualization, etc. must be mobilized together with
knowledge engineering to provide more efficient systems
for citizens. Do not forget that one of the scopes of urban
big data is to discover novel patterns and rules.

2

R. Laurini/ Journal of Visual Language and Computing (2019) 1-13

3.1 About geographic rules

 In Laurini et al. [10], several examples of geographic
rules were given, and some important semantical aspects
were extracted. Anyhow, geographic rules are a way to
model what Shoorcheh [21] has called spatial causality.

3.2 Generalities about the model

Based on the previous descriptions, a general diagram
for rules can be designed regrouping all aspects, their
origin, components, temporal dimension, mathematic
tools, their management, their usage and the various
modes of implication (Figure 1).
 For physical rules, the implication is mandatory;
 For legal rules, the implication is also mandatory, but

the sanctions may or may not exist; in this case, a
second rule with the negative conditions will lead to
the sanctions;

 For best practices, the implication is more or less a
kind of recommendation; in other words, nobody is
obliged to follow this kind of rules; perhaps some
additional conditions could be considered; at a first
approximation, random variates can help to select
best practices if any.

 For rules coming from data mining, it is necessary to
provide support and confidence. See Shekar et al.
[20] for details.

Figure 1 explains the main characteristics of geospatial

rules, namely, origin, mathematical tools, temporal
dimension, semantics, modality, usage and management.
Remark that an existing rule can be superseded by another
novel rule, sometimes for a period or a narrower place.

Fig. 1. Main characteristics of geospatial rules.

Now that basic components of geospatial rules are
given, let us try to design a mathematical model.

4. A Mathematical Model

This model will be based not only on logics and set
theory, but also on computational geometry, topology and
fuzzy set theory. Before giving the grammar, some
precisions must be done to explain the main components.
Anyway, in this model, we assume that:

a) a global geographic object called Earth includes
all existing geographic objects (GO) and territories (Terr),

b) an ontology will describe their types/classes
(whatever is the concept) together with some specific
attributes and generic relations between them,

c) all objects will have valued attributes; in the case
of new objects, the attributes are set to null,

d) there exists a set named Projects which comprises
all possible environmental and urban projects,

e) there exists a gazetteer integrating all place names
possibly with different variants and in different languages,

f) it is assumed that all information is correct and
consistent,

g) it is assumed that there are no problems neither
regarding geometry accuracy, nor multi-representation,

h) there are no considerations for storing,
implementation, optimization, etc.,

i) this language is not a rigid language as in
computer sciences, but a sketch in which everybody can
add symbols, functions, etc.

4.1 Geographic sets and collections

The first elements are the Earth and the sets of
Geographic Objects (GO). As some of them are well
characterized (roads, buildings, islands, etc.), others need
some clarifications about their definitions. The scope of
this paper is not to contribute to those characterizations as
works regarding geographic ontologies have revealed
several difficulties of categorization. Smith and Varzi [19]
have tried to clarify by distinguishing “Fiat” and “Bona
Fide” boundaries. Many objects are known by their name
(such Sahara), but the boundaries are not well defined,
similarly for the Rocky Mountains.

4.2 About places

All places belong to Earth and can be described
according to various solutions. The simplest ones are by a
name, for instance Argentina, the second by a set of
coordinates (polygons). Do not forget that a place can
form a non-connected polygon (for instance, a country
with its islands). More complex solutions can be defined,
e.g. the group of countries in which people are driving on

3

R. Laurini/ Journal of Visual Language and Computing (2019) 1-13

the left, a city district enclosed in a set of streets.

4.3 About geographic objects

All geographic objects (GO) have three types of
attributes, for identifying them, for describing them from
a geometric point of view and the semantic attributes. The
dot notation can be used, for instance "A.population".
Concerning identification, sometimes ID’s can be used,
but it is the more common to use a place name or a
toponym. As several places can have the same toponym
(e.g. Mississippi), the location will resolve ambiguities.
Concerning geometry, remember that sometimes an
object can have several geometries (multi-representation)
sometimes taken at different scales.

Semantic attributes can have different formats such as
alphanumeric, Boolean, multimedia, etc. In some cases,
fuzzy values can be used such as "near", "far", "low",
"high", etc. See Kainz [7] for details and examples.

However, in urban and environmental planning, one
needs to consider projects. Indeed, projects have different
phases. First, they are designed (design phase) maybe
with several sub-steps (preliminary, front-end, etc.). Then
there is a legal phase (building permit) in which the
project can be approved or rejected. The construction
phase itself will followed, sometimes delayed for
archaeological or financial reasons.

Finally, the projected object becomes really a
geographic feature, finished or not. In other words, it is
necessary to consider a Project superclass including any
geographic object-to be, for instance Project.Road. To
simplify the problem, the ontology of those objects-to-be
will similar to the ontology of existing geographic objects.

4.4 Relations, functions and procedures

Geographic relations are the basis of geographic
reasoning. Those relations include Egenhofer et al. [4] 2D
topological relations (Figure 2) and other relations.

Some of them are defined for types, and some other for
specific geographic objects. Remember that a relation is
Boolean (true or false) and can be checked in conditions.

Functions are also useful, some of them coming from
computational geometry. To name a few, Union,
Intersection, Minus, Distance, Centroid, Buffer, etc., and
they will be invoked when necessary. Anyone can add
additional functions.

Fig. 2. 2D Topological relations. Egenhofer et al. [4].

Two functions will be extensively used, Geom for the
geometry and Topo for names. By definition Geom (A) is
equivalent to A.Geom, and Topo (A) to A.Toponym.
Although they are not indispensable, they will be useful
in some cases.

Moreover, regarding existing models, the best solution
is to encapsulate those mathematical models into
procedures for using them when necessary. In addition, a
special procedure can be used to call another rule.

4.5 Semantics of Symbols

In this model, the mainstream meaning of mathematical
symbol will be accepted. However, due to this special
context, some semantics must be fixed for some symbols.
Let us explain some problems.

4.5.1 Implications

Three types of implications must be considered. The
symbol will be used for logical assertions coming from
physics or legal regulations. For best practices, the
expression " [BP]" will be used, and for associative
rules coming from data mining, this symbol will be
accompanied with the support and the confidence levels.

4.5.2 About equalities

Remember that the very common sign = has three
meanings, (i) for defining something, (ii) for an
assignment of value, and (iii) for comparisons. We will
use the following symbols:
a) = as a comparator in Boolean conditions; so that the
answer will be either true or false,
b) for definitions, especially of new variables,
c) := for assigning a new value to a known variable.

4.5.3 The More, the Merrier

Often rules are written according to the style "the more
of this, the more of that", or "the less of this, the more of
that"; for instance: "the more of traffic, the more of
pollution". To solve this problem, three solutions are
possible.

A B

Disjoint (A, B)

A B

Contains (A, B)

A

B

Inside (A, B)

A B

Overlaps (A, B)

A B

Touches (A, B)

A B

Equals (A, B)

A B

Covers (A, B)

B A

~Covers (A, B)

4

R. Laurini/ Journal of Visual Language and Computing (2019) 1-13

 To compare two geographic points – A1 and A2 – and
to show the evolution in space of some attributes such
has if A1 > A2 then F(A1) > F(A2), or G(A1) < G(A2),

 A solution can be to write + +x − −y, the
semantics of which are when x increases, then y
diminishes; for instance, when saying, the higher, the
colder, this sentence can be roughly encoded by
+ +elevation − −temperature,

 If a function between both variables is known, it can
be used directly.

4.5.4 About homologies

When one needs to compare two geometric shapes, it is
commonly accepted that there are some point coordinates
which are slightly different. Moreover, for the same
object, one person has measured 100 points, whereas
another 500. Sometimes, the symbol is used for
comparing numerical values. But when we need to
compare types and toponyms of geographic objects, other
semantics must be ascertained. Indeed, for strings of
characters, the Levenshtein distance [12] is used. For
instance, between Iraq and Iran the Levenshtein distance
is 1, whereas they are very different geographic objects.
Regarding types, one can consider that the concepts street
and road are similar. To solve this problem, I have
proposed to use the symbol ₪ (Laurini, [9, 11]) for
homologies. So that, considering two geographic objects,
we can write:

 Geom(A) ₪ Geom(B) for comparing these geometric
shapes (hence this is equivalent to Geom(A)
Geom(B).

 "London" ₪ "Londres" (London, UK, is called
Londres, both in French and Spanish languages;
another example is "Washington D.C. " ₪ "District
of Columbia".

 Type (A) ₪ Type (B) when the concept names are
different but are corresponding to the same concept,
maybe coming from different ontologies.

4.5.5 Other symbols
In logic, the entailment symbol ⊧ is used to denote an

affirmation taking the context into account. By writing ⊧
Contains (A, B), one claims that this relationship must be
considered as True. Whereas by writing only Contains (A,
B), one declares that he is considering this relationship,
but he has no hints whether it is True of False. Regarding
the other symbols coming from the set theory (, , , ,
, , , , , , etc.), they have their common meaning.

4.5.6 Consequents

In logic, remember that a conjunctive list of antecedents
implies a disjunctive list of consequents so that
A1A2A3…. Ai C1C2C3…. Cj in which both A

and C are Boolean expressions. In the disjunctive list, the
semantics are not clear: are all C’s true or only a subset?
Moreover, in our case, the consequents are not always
Boolean (remember IF-THEN-Fact and IF-THEN-
Action). To solve this problem, several decisions must be
made: (i) discarding the symbol , and separating
consequents by the symbol “;”, meaning that all of them
are independent and must be enabled; (ii) to use set
bracket parentheses {} to delimit several consequents if
any.

4.5.7 About complex places

Two points of view can now be considered, according
to the set theory and according to topology: we can write
either Ghana Earth or Contains (Earth, Ghana). By
extension, the set of left-driving countries can be defined
by either (UK, Ireland, Japan, etc.) LD_Countries, or
Geom (LD_Countries) Union (Geom (UK), Geom
(Ireland), Geom (Japan), etc.). More generally, to define
a place, all computational geometry functions can be used.
Concerning streets, it could be important to delimit only a
sector, for instance by giving civic numbers; for instance,
Geom (S) StreetSector (Street_name, Civic_number1,
Civic_number2).

To delimit a city district by a set of surrounding streets,
a special function can be invoked SurroundedByStreet
(Street1, Street2, Street3, Street4, etc.).

4.5.8 Remarks

Here are some additional remarks. First, we need to split
antecedents in context and conditions. Indeed, in the
previous examples, several things were not explicit, i.e.
the considered objects and sets were hinted or hidden:
those aspects will be described in the context, maybe
including definitions and constraints. Moreover, if one
needs to consider a negative rule, only the conditions are
denied, but not the constraints.

Secondly, let us enlighten the differences between a
b and contains (c, d). In those expressions, b is a set, and
a belongs to this set in the sense of the set theory, whereas
c and d are geometric objects and d is inside c from a
topological point of view.

5. Formalism

Any geographic rule will be designed as pictured in
Figure 3, containing namely Context, Conditions,
Implication and Consequents with the following
separators : and . Context will describe the main
variables; Conditions, one or more Boolean criteria to

5

R. Laurini/ Journal of Visual Language and Computing (2019) 1-13

follow; Implication, the modality; and Consequents, all
possible consequences that are to be run.

The grammar is presented by means of the Railroad

Diagram Generator (Rademacher, [17]) which is an
interesting way to present formally the syntactic structure
of a language.

Fig. 3. Formal definition of the grammar.

The Context will be defined as usual from the set theory
(Figure 4) by defining variables and their sets, possibly
followed by Definitions.

Fig. 4. Context and Declarations.

In Figure 4, as previously explained the extended
quantifiers (Salleb-Aoussi et al. [18]) will be used in
which a stands either for void (i.e. 1) or for a number
greater than 1, whereas b is a percentage. By definition,
∃ଵ= ∃ and ଵ% = .

Fig. 5. Definitions and Definition.

Those Definitions (Figure 4) will be used for giving
additional statements in the following manner (Figure 5)
in which two kinds of statements will be accepted, either
the assignment of a value to a variable already defined or
the result of an algebraic expression. In this paper, the
notion of algebraic expression will not be defined since it
is very common in all mathematical languages. In
addition, in the Definitions, it is possible to state a
relationship between variables considered as a sort of
constraint.

Now that the Context is fully characterized, let’s
consider Conditions. Similarly, Conditions and Condition
will be defined in Figure 6.

Regarding implications, as previously told, three
modalities exist (Figure 7) in which BP means best
practices. As usual, Support and Confidence are
percentages for rules coming from data mining.

Now, regarding Consequents, the structure will be
similar but recursive Figure 8).

Fig. 6. Conditions and Condition.

Fig. 7. Implication with three modalities.

In this grammar, the main concepts were presented.
Some concepts such as “variable”, “Algebraic
Expression”, etc. have their usual meaning in mathematics.
Now, let us consider a few examples.

Context : Conditions Implication Consequents

Grammar:

Context:

Variable GeographicObjects

,

b%

a

Places

Declarations:

Declarations

, Definitions

Definition

,

Definitions:

Variable AlgebraicExpression

⊧ Relationship

Definition:

6

R. Laurini/ Journal of Visual Language and Computing (2019) 1-13

Fig. 8. Consequents and Consequent.

6. Examples

Here are given a few examples of rules written with the
above-mentioned language. For that, we suppose the
existence of a town named "Smart Town".

6.1 Creating a new relation, a new zone

For defining a new relationship, it can be easily done, for
instance for North (see Rule 1). An equivalent could be
written for South. This rule is valid anywhere in the Earth.

 p1, p2 Earth, GeomType (p1) Point,
GeomType (p2) Point

:
Latitude (p1) > Latitude (p2)

⊧ North (p1, p2)

Rule
1

For defining East and West, the rule is a little more

complex (Rule 2).

 p1, p2 Earth,
GeomType (p1) Point, GeomType (p2)

Point
:

(Longitude (p1) > Longitude (p2))
 (Longitude (p1) – Longitude (p2) < 180°)

⊧ West (p1, p2)

Rule 2

Suppose we want to create a new relation when a road

is crossing a river. We need to consider a road, a river and
their intersection. If there is an intersection between the
road and the river, there is a cross relationship between
them, and it is commutative (Rule 3).

 Ro Road, Ri River
:

Area (Intersection (Geom (Ro), Geom
(Ri)))0

{⊧ Cross (Ro, Ri); ⊧ Cross (Ri, Ro) }

Rule
3

For the creation of a flood-risk area in Smart Town, let’s

supposed it to be defined within a 100 m buffer. Beware,
the river can pass either through the town (Overlap) or be
at the border (Covers). Here we must use a constructor,
that is a procedure to create a novel geographic object
(CreateGO). See Rule 4).

 T Town, R River, Topo (T)
"Smart Town"

:
Overlap (R, T) Covers (T, R)

{CreateGO (F); Type (F) := "Floodplain";

Geom (F) := Intersection (Geom (T), Buffer
(R, 100))}

Rule
4

Suppose that a law decides that when a brownfield site

is depolluted, it is possible to accept a new building (Rule
5).

 P Parcel, L Plants, B
Project.Building,

⊧ Contains (P, L), ⊧ Contains (P, B)
:

L.Erased P.Depolluted

⊧ B.Authorized

Rule
5

Suppose now that it was decided not to build in a marsh:

this rule can be written as follows (Rule 6):

C County, M Marsh, B Project,

⊧ Contains (C, M)
:

Contains (M, B)

Prohibit (B)

Rule 6

6.2 Again, the More, the Merrier

 Suppose that "Smart Beach" is a sea resort in which
land prices diminish when the distance to the sea
increases. This economic rule (Rule 7) can be written as
follows when considering two parcels with the same area:

{ Consequent ; Consequents }

Consequent

Consequents:

Declarations

Consequent:

Variable := AlgebraicExpression

⊧ Relationship

ProcedureCall

7

R. Laurini/ Journal of Visual Language and Computing (2019) 1-13

 p1, p2 Parcel, SSea, C County,
⊧ Touches (Sea, C),

⊧ (Area (Geom (p1) ₪ Area (Geom (p2))
:

Contains (C, p1) Contains (C, p2)
 (distance (centroid (geom(p1), S) >

distance (centroid (geom(p2), S))

⊧ p1.Landprice < p2.Landprice

Rule 7

With the second solution (Rule 8), we get:

 p Parcel, SSea, C County,

⊧ Touches (Sea, C)
:

Contains (C, p) ++distance (centroid
(Geom(p), S)

⊧ − − p.Landprice

Rule
8

Suppose that some economists have evaluated a

function F for prices, provided that the area is more than
100 m2 and the distance to the sea less than 10 km, the
following can be written (Rule 9):

 p Parcel, S Sea, C County,
⊧ Touches (Sea, C),

d (Centroid (Geom(p), S)
:

Contains (C, p)
 Area (Geom (p)) <100

 d < 10 000

p.Landprice := F (Area (geom (p)), d)

Rule
9

6.3 With fuzzy attributes

In the previous case, another solution can be based on
fuzzy values: the previous rule can be transformed into
"near the sea, prices are high", and "far from the sea,
prices are low" (Rule 10).

 p Parcel, S Sea, C County,
⊧ Touches (Sea, C),

d (Centroid (Geom(p), S)
:

Dist (S, p) = "near"

p.Landprice := "high"

Rule
10

An additional rule can be written, by respectively

replacing "near" and "high" with "far" and "low".

6.4 Best practice rules

Suppose it is a best practice to assign a pollution sensor
to each lamppost located in "Churchill Road"; the
example is given in Rule 11.

T, Town, R Road, L Lamppost,

 S Pollution.Sensor,
Topo (T) "Smart Town",

Topo (R) "Churchill Road"
:

Contains (Geom(T), Geom(R)) Contains
(Geom (R), Geom (L))

 [BP]
Assign (S, L)

Rule
11

6.5 Associative spatial rules

When studying road incidents in the city of Helsinki,
Finland, Karasova et al. [8] have shown by spatial data
mining that many incidents occur near bars and
restaurants. More exactly, around each incident they have
designed a 50 m buffer and see whether there were
incidents in those zones (Support 1.7% and confidence
40.0%).

The fact that the support is weak means overall that in
their database, there are many other objects, whereas the
confidence level means that 40 % of incidents happen in
the vicinity of bars or restaurant. This associative rule can
be written as follows in which Terr is a territory (Rule 12):

C City, B Bar, R Restaurant,
 I Incident,

 RiskyZone Terr, Topo (C) "Helsinki",
⊧ Contains (Geom (C), Geom (B)),
⊧ Contains (Geom (C), Geom (R)),
⊧ Contains (Geom (C), Geom (I)),

Geom (RiskyZone)
Union (Buffer (Centroid (Geom(B), 50),

Buffer (Centroid (Geom(R), 50))
 [1.7%, 40.0%]

⊧ Contains (Geom (RiskyZone), Geom
(I))

Rule
12

In their study in the city of Antwerp, Belgium, Zhou et

al. [23] have a lot of co-location association rules within
600 m buffers.

For instance, they discovered such a rule between

kindergartens, playgrounds, but support and confidence
were not mentioned (let write and for those unknown
values in the Rule 13).

8

R. Laurini/ Journal of Visual Language and Computing (2019) 1-13

C City, K Kindergarten, P
Playground,

Topo (C) "Antwerp"
:

Contains (Geom (C), Geom (K)),
Contains (Geom (C), Geom (P))

 [,]
⊧ Contains (Geom (Centroid (Geom(K), 600),

Geom (Centroid (P))

Rule
13

6.6 Back to previous rules

 Let us now rewrite rules given in §3.

The example previously given from Malerba et al. [13]
from an Italian census can be modeled by (Rule 14):

 P Earth, X LargeTown, Y, Z
Road,

Topo (P) "Italy"
:

Intersection (X, Y) Z Y
 [45%, 90%]

⊧ Intersection (X, Z)

Rule
14

The first rule given by Assab et al. [18] (Mines – ∃ହ

ଷ
Faults True) can be translated into (Rule 15):

 SA Earth, 3 F Fault,
Topo (SA) "South America"

:
Contains (Geom (SA), Geom (F))

{M Mines;

⊧ Contains (Geom (Buffer (Centroid (M),
5000), Geom (F))}

Rule
15

To finish this section, let’s consider the ultimate rule

designed by Varadharajulu et al. [22] (Rule 16):

R Project.Road
:

R.Length (R) < 200, Type (R) = "Close"

⊧ R.Allowed

Rule
16

6.7 Located rules

Sometimes rules are located in small places, for
example for urban planning zones. Figure 9 illustrates the
case in which there are 3 zones in which 5 rules can be
applied, those zones being delimited by the list of
surrounding streets. Two solutions are possible:

1 – for each zone, give the list of applicable rules,
2 – for each rule, give the list of zones in which they apply.

Fig. 9. Rules and zones.

With this rule-oriented language, let’s detail take the
option that, for each zone, will give the rules to be applied.
For zone A, the following can be written (Rule 17).

 C City, B Project, ZoneA Terr,
Geom (ZoneA) SurroundedByStreet

(A_Street, B_Street, D_Street, F_Street)
:

Contains (Geom (ZoneA), Geom (B))

{AppliedRule (101); AppliedRule (102) }

Rule
17

And similar rules can be written for ZoneB and ZoneC.

6.8 Superseded rules

As given in Figure 1, geographic rules can be
superseded. But this expression has two meanings. Let us
explain them.

The first means that a rule can be replaced by another
rule or a set of new rules. For instance, in urban planning
when a new plan is adopted. In this case, the previous rule
is removed and a new one is enabled. However,
geographic objects generated by means of the previous
rule still continue to stay; in addition, suppose the
previous rule imposes a limitation of 20 m for buildings
and the new one only 15 m; it does not imply to demolish
those 20m-high existing buildings. Let’s call this,
temporal superseding.

The second meaning is more complex: suppose that a

9

R. Laurini/ Journal of Visual Language and Computing (2019) 1-13

new rule is now valid in a small portion of a territory as
illustrated in Figure 10. Two solutions are possible; either
to state that the new rule (in Z2) has a priority over the rule
in Z1; or to modify the initial rule by replacing Geom (Z1)
by Minus (Geom (Z1), Geom (Z2)). Let’s call this, spatial
superseding.

Fig. 10. Example of spatial superseding.

7. Example in Urban Planning

Building permit delivery is a very complex task for local
authorities. Indeed, a projected building must be
compliant with two types of constraints, national laws and
local rules. National laws which are valid everywhere in
the country, generally consider structural aspects, such as
electricity, insulation, access for handicapped people, etc.
– issues which are outside the goal of this paper – whereas
local rules consider the location of the building and its
conformance to local planning rules, such as height,
distance to neighboring parcels, floorspace ratios, etc.
Figure 11 depicts the map with the extension of planning
zones, and Table 1gives some limit parameters like
maximum height, maximum floorspace ratio and
maximum footprint of the building.

TABLE I. PLANNING ZONES AND THEIR PARAMETERS

Zone ID Max
Height
(in m)

Max
Floorspace

ratio

Max
Footprint

Downtown 12 3 80 %
Suburban
area

15 4 70 %

Rural area 12 0.5 30 %
Near
airport
(Bowtie)

8 2 50 %

Airstrip 0 0 0

7.1 Rules for zones

First let’s suppose we have rules for dividing the
territory and creating zones.

And so, for ZoneB, "Suburban area"; ZoneC, "Rural

area"; ZoneD, "Near airport" and ZoneE, "Airstrip", with
the appropriate coordinates, respectively numbered Rule
19, Rule 20 and Rule 21. For a projected building
supposedly located in the Suburban Area, the rule will be
as follows to be accepted.

Fig. 11. Planning zones

 C City, PZoneA Project.Terr,
Topo (C) "Smart Town"

Geom (PZoneA) Polyg (731, 128; 903, 133;
905, 341; 839, 346; 814, 349)

:
Approved (PZone)

AffectName (PZoneA, "Downtown")

Rule
18

In this toy-example, we will consider a projected

building presented to "Smart Town" local authority, the
urban planning department of which has decided to cut the
town into three zones, namely downtown, suburban area
and rural area.

7.2 Rules regarding parcels and construction

To simplify, we will not consider parcels in which
construction is not possible, and parcels for which
municipalities may trigger some pre-emptive rights (for
instance for schools, parks, etc.).

Fig. 12. Different states for a parcel regarding planning.

When there is a pre-existing building, a demolition
permit must be granted and when it was a plant

Z1
Z1

Z2

Before After

Airport airstrip,
construction prohibited

Where building’s height
is limited to 8 m

At the vicinity of
historical monuments,
in Downtown,
construction prohibited

Rural
Area

Suburban
Area

10

R. Laurini/ Journal of Visual Language and Computing (2019) 1-13

(brownfield), depollution is need (Figure 12). In addition,
at the vicinity of a historical monument or of an airport,
special limitations apply.

Fig. 13. Any projected building must be compliant with planning rules.

7.3 Projected Buildings and Urban Planning Rules

Regarding planning zones, each has its own regulations.
For example, campsites are not allowed in downtown. To
simplify, three zones are defined, downtown, suburban
area and rural area. However, historical monuments are
located in downtown, and it is forbidden to construct new
buildings round them (for instance, within 200 meters). In
the rural area, there is an airport for which some
limitations exist (Figure 11). See Rule 22.

 C City, ZoneB Terr, B
Project.Building, P Parcel,

Topo (C) "Smart Town",
Topo (ZoneB) "Suburban Area"

⊧ Contains (Geom (C), Geom (ZoneB)),
⊧ Contains (Geom (ZoneB), Geom (P)),

⊧ Contains (Geom (P), Geom (B))
:

B.Height 15
˄ Area (Union (Geom (Floors)))/Area (Geom

(P)) 4
˄ Area (B)/ Area(Geom (P)) 0.70

⊧ B.ZoneB_Approved

Rule
22

But for Downtown and Rural Area, the situation is more

complex. For Downtown, we have to take historical
monuments into account, for instance within a 200 m
buffer around its centroid. See Rule 23.

For the Rural Area, taking the airport into consideration,
we need to consider three areas, the area outside the
airport, the airstrip in which any building is forbidden, and
finally in the “bowtie” with additional limits (Rule 24).

Technically speaking, we have to use an “exclusive or”,
noted between those three possibilities.

 C City, ZoneA, ConservA Terr, B

Project.Building,
 P Parcel, M Monuments,

Topo (C) "Smart Town",
Topo (ZoneA) "Downtown",

Geom (ConservA) Union (Buffer (Centroid
(Geom(M), 200))),

⊧ Contains (Geom (C), Geom (ZoneB)),
⊧ Contains (Minus (Geom (ZoneA), Geom

(ConservA)), Geom (P)),
⊧ Contains (Geom (P), Geom (B))

:
B.Height 12

˄ Area (Union (Geom (Floors)))/Area (Geom
(P)) 3

˄ Area (B)/ Area(Geom (P)) 0.80

⊧ B.ZoneA_Approved

Rule
23

 C City, ZoneC, Bowtie, Airstrip Terr,

 B Project.Building,
 P Parcel,

Topo (C) "Smart Town",
Topo (ZoneA) "Rural Area",

Geom (Bowtie) = Polyg (640, 243; 657, 290;
748, 387; 796, 405; 743, 459; 729, 406; 636,

316; 580, 297),
Geom (Airstrip) = Polyg (670, 311; 724, 365;

707, 386; 650, 330),
⊧ Contains (Geom (C), Geom (ZoneC)),

⊧ Contains (Geom (P), Geom (B))
:

(Contains (Minus (Geom (ZoneC), Geom
(Bowtie)), Geom (B)),

˄ B.Height 12 ˄ Area (Union (Geom
(Floors)))/Area (Geom (P)) 0.5

˄ Area (B)/ Area (Geom (P)) 0.30)
 Disjoint (Geom (Airstrip), Geom (B))
 (Contains (Geom (Bowtie)), Geom (B))

˄ B.Height 8 ˄ Area (Union (Geom
(B.Floor)))/Area (Geom (P)) 0.5

˄ Area (B)/ Area (Geom (P)) 0.30)

⊧ B.ZoneC_Approved

Rule
24

Now, to be fully approved by the local administration,

whatever its location, a projected building to be approved
must follow the subsequent rule; here again, exclusive-ors
() must be used (Rule 25).

11

R. Laurini/ Journal of Visual Language and Computing (2019) 1-13

 C City, B Project.Building,
Topo (C) "Smart Town",

⊧ Contains (Geom (C), Geom (B)
:

(Contains (Geom (ZoneA), Geom (B)) ˄
B.ZoneA_Approved)

 (Contains (Geom (ZoneB), Geom (B)) ˄
B.ZoneB_Approved)

 (Contains (Geom (ZoneC), Geom (B)) ˄
B.ZoneC_Approved)

⊧ B.FullyApproved

Rule
25

Of course, those rules can be enriched to take

depollution for possible brownfields into account as
exemplified in Rule 5, flood restriction, etc. Moreover,
additional rejection rules can be written.

8. Conclusions

The goal of this paper was to present the first version of
a mathematical language for geographic static rule
modeling, independent from any computer language and
able to integrate all semantics. Thus, this language is
based on several mathematical domains such as logic, set
theory, computational geometry, topology, etc.

At the moment, only several hundreds of 2D static rules
are modeled with an interesting expressive power. For the
complete modeling of any geographic rule, research must
be carried out in several directions:

 integration of 3D issues, especially for terrain

modeling and engineering networks;
 integration of temporal issues; this will lead to

dynamic geospatial rules; remember that time
semantics are very complex in geography, ranging
from fuzzy billions of years in geology until seconds
for real time sensors;

 integration of rules deriving from continuous fields,
especially for dealing with meteorology, pollution,
etc. and other aspects in physical geography;

 integration of additional clauses to extend its
expressive power, overall to deal with networks
whatsoever, electricity, sewerage, bus lines, etc.;

 looking for more issues in order to enrich semantics,
especially for the automatic adaptation to special
contexts; for instance, how to adapt a rule such as
"when planning a metro, move underground
engineering networks" to various street
configurations;

 transformation of this mathematical language into a
computer language;

 study of metadata relative to geographic rules (origin,
modality, etc.);

 design of an inference engine to reason with those
rules;

 defining the organization of rules together for their
access mechanisms taking temporal and spatial
superseding mechanisms.

To conclude this paper, let me thanks the anonymous

referees for their work and especially their fruitful
comments.

References

[1] Boley H. (2006) “The RuleML Family of Web Rule Languages”.

International Workshop on Principles and Practice of Semantic
Web Reasoning. Springer, Berlin, Heidelberg, pp. 1-17. Can be
downloaded from http://www.cs.unb.ca/~boley/papers/ruleml-
family.pdf

[2] Boley, H., Paschke, A., Shafiq, O. (2010) “RuleML 1.0: The
Overarching Specification of Web Rules”. In Semantic Web Rules:
International Symposium, RuleML 2010, Washington, DC, USA,
October 21-23, 2010, Proceedings (Vol. 6403, p. 162). Springer
Science & Business Media.

[3] Dietz J.L.G. (2008) “On the Nature of Business Rules”. In
Advances in Enterprise Engineering, Springer Verlag Lecture
Notes in Business Information Processing (10) pp. 1-15.

[4] Egenhofer M. & Franzosa R.D. (1991) “Point-set topological
spatial relations”, International Journal of GIS, vol.5, no.2, pp.
161-174.

[5] Espinasse B. (2017). “Introduction to Semantic Web Rule
Language -SWRL”. Can be downloaded from
http://www.lsis.org/espinasseb/Supports/ONTOWS/SWRL.pdf

[6] Graham I. (2006) “Business Rules Management and Service
Oriented Architecture: A Pattern Language”. London, John Wiley.

[7] Kainz W. (2002) “Fuzzy Logic and GIS”. Can be downloaded
from
https://homepage.univie.ac.at/Wolfgang.Kainz/Lehrveranstaltung
en/ESRI_Fuzzy_Logic/File_2_Kainz_Text.pdf

[8] Karasova V., Krisp J.-M., Virrantaus K. (2005) “Application of
Spatial Association Rules for Improvement of a Risk Model for
Fire and Rescue Services”. Proceedings on the 10th Scandinavian
Research Conference on Geographical Information Science
(ScanGIS), Stockholm, Sweden, pp. 183-193.

[9] Laurini, R. (2014) “A Conceptual Framework for Geographic
Knowledge Engineering”, Journal of Visual Languages and
Computing (2014), Volume 25, pp. 2-19.

[10] Laurini R., Servigne S., Favetta F. (2016) “An Introduction to
Geographic Rule Semantics”. In Proceedings of the 22nd
International Conference on Distributed Multimedia Systems
(DMS 2016), Salerno, Italy, November 25-26, 2016. Published by
Knowledge Systems Institute, ISBN: 1-891706-40-3, pp. 91-97.

[11] Laurini, R. (2017) “Geographic Knowledge Infrastructure for
Territorial Intelligence and Smart Cities”. ISTE-Wiley. 250 p.

[12] Levenshtein, V. I. (1966). “Binary codes capable of correcting
deletions, insertions, and reversals”. In Soviet Physics, doklady,
volume 10, pp. 707–710.

[13] Malerba D., Esposito F., Lisi, F., Appice A. (2003). “Mining
Spatial Association Rules in Census Data. Research in Official
Statistics. 5. Can be downloaded from
https://www.researchgate.net/publication/2839474_Mining_Spati
al_Association_Rules_in_Census_Data/download .

12

R. Laurini/ Journal of Visual Language and Computing (2019) 1-13

[14] Morgan T. (2008) “Business Rules and Information Systems:
Aligning IT with Business Goals”. Addison-Wesley.

[15] Pittl B., Fill H.-G. (2018) “A Visual Modeling Approach for the
Semantic Web Rule Language”. Semantic Web Journal.
September 2018. Can be downloaded from http://www.semantic-
web-journal.net/system/files/swj2023.pdf

[16] Ross R. G. (2011) “More on the If-Then Format for Expressing
Business Rules: Questions and Answers”, Business Rules Journal,
Vol. 12, No. 4 (Apr. 2011), URL: http://www.BRCommun
2002ity.com/a2011/b588.html .

[17] Rademacher G. (2019) “Railroad Diagram Generator”.
https://bottlecaps.de/rr/ui

[18] Salleb-Aouissi A., Vrain C. & Cassard D. (2015) “Learning
Characteristic Rules in Geographic Information Systems”. N.
Bassiliades, G. Gottlob, F. Sadri, A. Paschke, D. Roman (Eds.).
Rule Technologies: Foundations, Tools, and Applications, 9th
International Symposium, (RuleML 2015), Aug 2015, Berlin,
Germany. Springer, 9202, 2015, Lecture Notes in Computer
Science.

[19] Smith B., Varzi A., (2000), “Fiat and Bona Fide Boundaries”.
Philosophy and Phenomenological Research Vol. LX, No. 2,
March 2000, pp. 401-420.

[20] Shekhar S., Huang Y., (2001) “Discovering Spatial Co-location
Patterns: A Summary of Results”, in Proc. of the7th Int’l
Symposium on Spatial and Temporal Databases, 2001, pp. 236–
256.

[21] Shoorcheh M. (2018) “On the spatiality of geographic
knowledge”. Asian Geographer. 36:1, pp. 63-80, DOI:
10.1080/10225706.2018.1463854.

[22] Varadharajulu P., West G., Mcmeekin D., Moncrieff S. & Arnold
L. (2016), “Automating Government Spatial Transactions”. In
Proceedings of the 2nd International Conference on Geographical

Information Systems Theory, Applications and Management
(GISTAM), held in April 2016, Rome, Italy, edited by Jorge
Gustavo Rocha and Cédric Grueau, published by Scitepress, ISBN:
978-989-758-188-5, pp. 157-167.

[23] Zhou C., Xiao W.D, Tang D.Q. (2016) “Mining Co-Location
Patterns from Spatial Data”. ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Information
Sciences, Volume III-2, 2016 XXIII ISPRS Congress, 12–19 July
2016, Prague, Czech Republic, pp. 85-90.

J

13

14

 Y. Zou et al. / Journal of Visual Language and Computing (2019) 15-28

DOI reference number: 10.18293/JVLC2019N1-017

Context Computation for Implicit Context-Sensitive Graph
Grammars: Algorithms and Complexities

 Yang Zoua, Xiaoqin Zeng, and Yufeng Liu

Institute of Intelligence Science and Technology, School of Computer and Information, Hohai University, China
__

A R T I C L E I N F O

Article History:
Submitted 3.1.2019
Revised 6.1.2019
Second Revision 7.22.2019
Accepted 8.26.2019

Keywords:
Visual languages
Context-sensitive graph grammars
Context computation
Algorithm
Complexity

A B S T R A C T

Visual Programming Languages have been frequently utilized in computer science. Context-sensitive
graph grammars are appropriate formalisms for specifying visual programming languages, since they
are intuitive, rigorous, and expressive. Nevertheless, some of the formalisms whose contexts are
implicitly or even incompletely represented in productions, called implicit context-sensitive graph
grammars, suffer inherent weakness in intuitiveness or limitations in parsing efficiency. Making
context explicit to productions tends to be a conceivable way to address this issue. Based on the
formalization of context, this paper proposes an approach to the computation of context for implicit
context-sensitive graph grammars. The approach is comprised of four partially ordered algorithms.
Moreover, the complexities of the algorithms are analyzed and the applicability of the approach is
discussed. Thus, the proposed approach paves the way for the practical applications of context in
implicit context-sensitive graph grammar formalisms, such as facilitating the comprehension of graph
grammars and improving parsing performance of general parsing algorithms.

 © 2019 KSI Research

1. Introduction
In many fields of computer science, Visual

Programming Languages (VPLs) have been frequently
adopted in modeling, representation, and design of
complex structures. VPLs usually handle those objects
that do not possess inherent visual representation in a
visual way [1].

Various approaches have been proposed to formally
specify and parsing VPLs, such as constraint multiset
grammars [2], symbol-relation grammars [3], picture
processing grammar [4], visual grammar [5], attributed
shape grammar [6], compiler techniques [7], etc. As a
natural extension of formal grammar theory, graph
grammars offer the mechanisms for formal specification
and parsing of VPLs [8], just like formal grammars do for

string languages. However, the extension from one-
dimensional string-based formal grammars to two-
dimensional graph grammars brings about a few novel
challenges, especially the embedding problem. The
embedding problem refers to that how to avoid creating
dangling edges when replacing a subgraph in a graph
(called host graph) with another graph and connecting the
remainder and the replacing graph together to produce a
whole graph. Quite a few graph grammar formalisms have
been proposed in the literature [8-12]. From the
perspective of usability, there is still room for these
formalisms to be ameliorated in expressive power or
computing efficiency.

 Most of the existing graph grammar formalisms fall into
the categories of context-free and context-sensitive. The
expressive power of a graph grammar lies on the type it
belongs to as well as the embedding mechanism it chooses
[13-14]. Among all the categories of embedding
mechanisms that vary in complexity and power, invariant
embedding is the least complex one and most commonly

aCorresponding author
Email address: yzou@hhu.edu.cn

Journal of Visual Language and Computing

journal	homepage: www.ksiresearch.org/jvlc/

15

Y. Zou et al. / Journal of Visual Language and Computing (2019) 15-28

DOI reference number: 10.18293/JVLC2019N1-017

employed in graph grammar formalisms. Context-
sensitive graph grammars tend to be more expressive than
context-free ones, when confined to identical less
complex embedding mechanisms and invariant
embedding in particular. As context-free graph grammars
have difficulty in specifying a large portion of graphical
VPLs [11-12], recent research in this field focus more on
context-sensitive graph grammar formalisms and their
applications [15-22].

 Generally, a graph grammar consists of a set of
productions (rewriting rules), each of which is a pair of
graphs, called left graph and right graph, together with an
embedding expression. In context-sensitive graph
grammars, the contexts pertaining to a production
generally refer to the neighboring subgraphs of the
rewritten portion of its left graph in potential host graphs
[23], which describe the situations under which the
production can be applied. A host graph is a graph that is
being rewritten by some graph grammar in the process of
derivation or parsing. However, the context portion of a
production, i.e., the remainder of the left graph minus the
rewritten portion, is commonly not a direct copy of the
contexts for the sake of conciseness of productions and
easiness of embedding.

 As is known, the most representative context-sensitive
graph grammar formalisms are Layered Graph Grammar
(LGG) [11] and Reserved Graph Grammar (RGG) [12].
In order to solve the embedding problem, LGG identically
involves in the left and right graphs of a production its
immediate context and imposing a dangling edge
condition on redex definition, which guarantees that
dangling edges never occur in rewritten host graphs.
Generally, a redex is a subgraph in a host graph that is
isomorphic to the left or right graph of a production. RGG
is commonly viewed as an improvement over LGG in
respect of succinctness of specification and efficiency of
parsing algorithm. Rather than directly involving contexts
in productions just as LGG does, RGG formalism invents
a particular two-level node structure coupled with a
marking technique to indirectly specify the context of a
production by identically distributing a set of marked
vertices into the left and right graphs. The vertices
establish a one-to-one correspondence between the two
graphs in terms of their marks. Thus, the embedding
problem is solved through this mechanism together with a
dedicated embedding rule. Other context-sensitive
formalisms include Edge-based Graph Grammar (EGG)
[23-24], Context-Attributed Graph grammar (CAGG)
[25], Contextual Layered Graph Grammar (CLGG) [26],
and Spatial Graph Grammars (SGG) [27]. To tackle the
embedding problem, EGG identically augment a set of
marked dangling edges to both the left and right graphs of
a production, whereas CAGG introduces attributes of
nodes to establish a correspondence between the two

graphs of a production. CLGG and SGG are extensions of
LGG and RGG, respectively. Based on LGG, CLGG
supports three extra mechanisms, which can be employed
to define more complex VPLs. SGG extends RGG by
augmenting its productions with a spatial specification
mechanism, with which it can explicitly describe both
structural and spatial relationships for VPLs.

 According to how the context portion of a production is
dealt with, the preceding formalisms fall into two
categories: explicit and implicit [28]. The former
formalisms indicate those that directly enclose the
complete immediate contexts as its context portion in a
production, whereas the latter refers to the ones in which
the context portion is expressed as specifically tailored
(i.e., incomplete) immediate contexts, attributes adhered
to the rewritten portion, or even newly introduced graph
notations. Apparently, LGG and RGG are typical
examples of the former and the latter, respectively.

One of the inherent deficiencies of implicit formalisms
is that they are not intuitive, which arises from the fact
that the context portion of a production is not the complete
immediate contexts. In RGG, the context portion is a set
of marked vertices. Vertices are explained to be
connecting points of edges, but their exact meaning is left
undefined. Therefore, the selection, arrangement and
marking of vertices within a node become a challenge in
the design of productions. Moreover, as actual immediate
contexts are absent in productions, it is rather difficult for
users to exactly comprehend the language of a given graph
grammar. Noticeably, similar situations also arise in other
implicit formalisms.

 Making context explicit can be a conceivable way to
address the above issues. Obviously, explicit context is
helpful in several application scenarios. Context can be
employed to make up the deficiency in intuitiveness so as
to facilitate the comprehension and design of implicit
graph grammars. Furthermore, context can be utilized to
reduce the search space in general parsing algorithms by
decreasing the times of backtracking through context
matching, thus improving the parsing efficiency. In the
literature [28], a formal definition of context is presented
and the properties are characterized, which provide a solid
theoretical foundation for the computation of context.
Nevertheless, the formalization of context and its
properties is complex, a direct approach for computation
is not available. Therefore, an explicit and detailed
method for context computation is apparently a necessity
for serving the purpose of context usage in application
scenarios.

 In this paper, on the basis of RGG formalism, an
approach to context computation in implicit graph
grammar formalisms is proposed. This is a subsequent
research work on context, and the technical contributions

16

Y. Zou et al. / Journal of Visual Language and Computing (2019) 15-28

DOI reference number: 10.18293/JVLC2019N1-017

are as follows: It presents a concrete approach for context
computation, which is comprised of four partially ordered
algorithms with each one being dependent on its
predecessors. Moreover, it provides the time complexities
of the algorithms. Besides, it discusses the applicability of
the approach. This method can be generalized to be
applicable to other implicit formalisms. Hence, it paves
the way for the application of context for the implicit
context-sensitive graph grammar formalisms.

 The remainder of the paper is organized as follows:
Section 2 reviews the RGG formalism and excerpts the
formal definition of context. Section 3 proposes an
approach that consists of four algorithms to the
computation of context. Section 4 addresses the
complexities of the algorithms. Section 5 discusses the
applicability of the algorithms. Finally, section 6
concludes the paper and proposes future research.

2. Preliminaries
 A graph grammar consists of an initial graph and a
collection of productions (graph rewriting rules). Each
production has two graphs called left graph and right
graph respectively, and can be applied to another graph
called host graph. Every node in a production is either a
terminal or a non-terminal node. A graph grammar defines
a graph language composed of those graphs that can be
derived from the initial graph by repeated applications of
the productions and whose nodes are all terminal ones. A
redex is a subgraph in a host graph that is isomorphic to
the left or right graph of a production.

2.1 The RGG Formalism

 RGG is a context-sensitive graph grammar formalism [9].
It introduces a node-edge format to represent graphs in
which each node is organized as a two-level structure,
where the large surrounding rectangle is the first level,
called super vertex, and other embedded small rectangles
are the second level, called vertices. Either a vertex or a
super vertex can be the connecting point of an edge. In
addition to the two-level node structure, the RGG also
introduces a marking technique that divides vertices into
two categories: marked and unmarked ones. Each marked
vertex of a production is identified by an integer that is
unique in the left or right graph where the vertex lies. A
production is properly marked if each marked vertex in
the left graph has a counterpart marked by the same
integer in the right graph, and vice versa.

 In the process of a production application, when a redex
is matched in a host graph, each vertex that corresponds
to a marked vertex in the left or right graph preserves its
associated edges connected to nodes outside of the redex,
which avoids the appearance of dangling edges during the

subsequent subgraph replacement process provided that
an additional embedding rule is also enforced. The
embedding rule states that if a vetex in the right (or left)
graph of a production is unmarked and has an isomorphic
vertex in the redex of a host graph, then all the edges that
are connected to the vertex should be completely inside
the redex.

Fig. 1. A graph grammar for process flow diagrams.

 As an example, an RGG specifying process flow
diagrams, which is slightly adapted from [11], is depicted
in Figure 1.

2.2 Partial and Total Precedence

 In this subsection, we take the RGG as the representative
of implicit context-sensitive graph grammar formalisms
to present partial and total precedence relations between
graph productions. For the sake of clarity and simplicity,
some basic concepts and notations are listed below. Note
that graphs are directed ones in the node-edge format and
only vertices in productions might be marked.

 RGG: A reserved graph grammar is a triple 𝐴, 𝑃, 𝛺 ,
where 	𝐴 is an initial graph, 	𝑃 a set of graph grammar
productions, 𝛺 a finite label set consisting of two disjoint
sets 𝛺& and 𝛺'&(called terminal label set and nonterminal
label set, respectively). For any production 𝑝 ≔ (𝐿, 𝑅) ∈
𝑃, three conditions are satisfied: 𝑅 is non-empty, 𝐿 and 𝑅
are over 𝛺, and the size of 𝑅 are not less than that of 𝐿.

 𝑝 ≔ (𝐿, 𝑅): A production with a pair of marked graphs:
the left graph 𝐿 and right graph 𝑅. The notations 𝑝. 𝐿 and
𝑝. 𝑅 represent the left and right graph of a production 𝑝,
respectively. For any graph 𝐺 , 𝐺. 𝑁 and 𝐺. 𝐸 denote the
set of nodes and edges, respectively; 𝑛. 𝑉 and 𝑛. 𝑣 denote
the set of vertices and some vertex 𝑣 of a node 𝑛 ,
respectively; and 𝐺. 𝑉 = 𝑛. 𝑉7∈8.' is the union of the
sets of vertices of nodes in 𝐺; for any edge 𝑒, 𝑠 𝑒 and

Stat
1:T

2:B

if
1:T

Stat
T

B
Stat
T

B

endif
T

2:B

:=λ

begin

Stat
T

B

end
T

:=

B

Stat

Stat
1:T

B

Stat
T

:=
1:T

2:B

2:B

(1)

(3)

(2)

B

Stat
1:T

2:B

fork
1:T

Stat
T

B
Stat
T

B

join
T

2:B

:=(5)

B
fork
1:T

Stat
T

B
Stat
T

B

join
3:T

4:B

:=(6)

2:B
fork
1:T

Stat
T

B

join
3:T

4:B

2:B

assign
1:T

2:B
:= (4)Stat

1:T

2:B

receive
3:T

4:B

send
1:T

2:B
:=(7)

Stat
1:T

2:B

Stat
3:T

4:B

 5 send 5 send
1:T

2:B

1:T

2:B
(8)

receive
3:T

4:B

:=

Stat
3:T

4:B
 5 receive

3:T

4:B

send
1:T

2:B
:=(9)

Stat
1:T

2:B

 5 receive
3:T

4:B

17

Y. Zou et al. / Journal of Visual Language and Computing (2019) 15-28

DOI reference number: 10.18293/JVLC2019N1-017

𝑡 𝑒 represent the source and target vertex of 𝑒 ,
respectively, and 𝑙 𝑒 is the label on 𝑒. 𝑃= = 𝑝. 𝐿|𝑝 ∈ 𝑃
and 𝑃? = 𝑝. 𝑅|𝑝 ∈ 𝑃 .

 𝐺@ ≈ 𝐺B: 𝐺@ is isomorphic to 𝐺B.

 Redex: A subgraph 𝑋 ⊆ 𝐻 is a redex of graph 𝐺, denoted
as 𝑋 ∈ 𝑅𝑑(𝐻, 𝐺), if 𝑋 ≈ 𝐺 under an isomorphic mapping
𝑓 and any vertex in 	𝑋 that is isomorphic to an unmarked
vertex in 𝐺 keeps its edges completely inside 𝑋.

 𝑅𝑑(𝐻, 𝐺): A set of redexes of marked graph 𝐺, which
are subgraphs of graph 𝐻.

 𝑀𝑐𝑐 : A mapping from graphs to the sets of maximal
connected components contained in these graphs. A
maximal connected component in a graph is a connected
component being maximal.

 𝑀𝑐𝑐 𝑃= = 𝐶|𝐶 ∈ 𝑀𝑐𝑐 𝑝. 𝐿 	⋀	𝑝 ∈ 𝑃 , 𝑀𝑐𝑐 𝑃? =
𝐶|𝐶 ∈ 𝑀𝑐𝑐 𝑝. 𝑅 	⋀	𝑝 ∈ 𝑃 .

 The following definitions excerpted from [28] are
necessary to understand the notion of context and the
approach to context computation.

 Definition 1. Let 𝑔𝑔 ≔ 𝐴, 𝑃, 𝛺 be an RGG, 𝑝@, 𝑝B ∈ 𝑃
be two productions, 𝐶@ ∈ 𝑀𝑐𝑐(𝑝@. 𝐿) and 𝐶B ∈
𝑀𝑐𝑐(𝑝B. 𝑅). If ∃𝑋 ⊆ 𝐶B such that 𝑋 ∈ 𝑅𝑑(𝐶B, 𝐶@), then
𝐶@ is matched with 𝑋 in 𝐶B, denoted as 𝐶@ ≈ 𝑋 ⊑ 𝐶B; or
concisely 𝐶@ is included in 𝐶B, denoted by 𝐶@ ⊑ 𝐶B.

 The definition introduces the notion of inclusion
between the components of productions, or to be exact, to
locate a redex of a component of the left graph of one
production in some component of the right graph of
another production.

 Let 𝑈 be some set and 𝑆 = 𝐵,𝑚 a multiset, where 𝐵 is
the underlying set of elements and 𝑚:	𝐵 → ℕ is a
mapping from 𝐵 to the set ℕ of positive natural numbers.
𝑆 ⊆ℕ 𝑈 if and only if 𝐵 ⊆ 𝑈. In order to unambiguously
reference to an element from a multiset, we stipulate that
any two elements in a multiset 𝑆 have distinct identities
even if they are the same element from the point of view
of the underlying set 𝐵, and the identities of elements are
not explicitly represented in context for the sake of
conciseness.

 Definition 2. Let 𝑔𝑔 ≔ 𝐴, 𝑃, 𝛺 be an RGG, and 𝑃=
and 𝑃? the sets of left and right graphs of productions in
𝑃 , respectively. A set 𝑆@ ⊆ 𝑀𝑐𝑐(𝑃=) is included in
another multiset 𝑆B ⊆ℕ 𝑀𝑐𝑐(𝑃?), denoted as 𝑆@ ⊑ 𝑆B, if
there is a mapping 𝑓: 𝑆@ → 𝑆B such that:

 • ∀𝐶 ∈ 𝑆@(∃𝑋 ⊆ 𝑓(𝐶)(𝑋 ∈ 𝑅𝑑(𝑓(𝐶), 𝐶))), and

• ∀𝐶, 𝐶W ∈ 𝑆@ 𝐶 ≠ 𝐶W ∧ 𝑓 𝐶 = 𝑓 𝐶W → ∃𝑋, 𝑋W ⊆
𝑓 𝐶 𝑋 ∈ 𝑅𝑑 𝑓 𝐶 , 𝐶 ∧ 𝑋W ∈ 𝑅𝑑 𝑓 𝐶 , 𝐶W ∧ 𝑋 ∩ 𝑋W =
𝜙 .

 In the definition, the first condition states that for each
component in 𝑆@ , there is an image in 𝑆B under the
mapping 𝑓 that contains a redex of it; and the second
expresses that if two different components in 𝑆@ have the
same image in 𝑆B, then the two corresponding redexes in
it cannot overlap, which strictly adheres to the redex
definition in the RGG formalism.

 Definition 3. Let 𝑔𝑔 ≔ 𝐴, 𝑃, 𝛺 be an RGG, and
𝑝@, 𝑝B ∈ 𝑃 be two productions, 𝑝@ directly partially
precedes 𝑝B , denoted as 	𝑝@ ≼] 𝑝B , if ∃𝑆 ⊆ 𝑀𝑐𝑐(𝑝B. 𝐿)
such that 𝑆 ⊑ 𝑀𝑐𝑐(𝑝@. 𝑅). The direct partial precedence
relation between them is denoted by the pair 𝑝@, 𝑝B . The
direct partial precedence relation on the set 𝑃 of
productions is defined as ≼^= 𝑝@, 𝑝B |𝑝@, 𝑝B ∈ 𝑃 ∧
𝑝@ ≼] 𝑝B . The partial precedence relation between them
is denoted by the pair 𝑝@, 𝑝B .

 The direct partial precedence between a pair of
productions characterizes the fact that a component of one
production’s left graph is isomorphic to a subgraph
included in a component of another production’s right
graph.

 The partial precedence relation is the closure of the direct
partial precedence relation on a set 𝑃 of productions.

 Partial precedence is a kind of relation between a pair of
components chosen from two distinct productions,
whereas total precedence describes the same relation
between two sets of components from the right graphs of
a subset of productions and the left graph of a single
production, respectively.

 Definition 4. Let 𝑔𝑔 ≔ 𝐴, 𝑃, 𝛺 be an RGG, 𝑝 ∈ 𝑃 ,
and a multiset 𝑃W ⊆ℕ 𝑃 . 𝑃W directly totally precedes 𝑝 ,
denoted as 𝑃W ≺] 𝑝 , if there is a surjective mapping
𝑓:𝑀𝑐𝑐(𝑝. 𝐿) → 𝑆𝑡 such that:

 • 𝑆𝑡 ⊆ 𝑀𝑐𝑐(𝑃?W);

 • 𝑀𝑐𝑐(𝑝. 𝐿) ⊑ 𝑀𝑐𝑐(𝑃?W) with respect to 𝑓;

 • ∀𝑝W ∈ 𝑃W ∃𝐶 ∈ 𝑀𝑐𝑐 𝑝. 𝐿 𝑓 𝐶 ∈ 𝑀𝑐𝑐 𝑝W. 𝑅 .

 The corresponding direct total precedence relation is
denoted by the pair 𝑃W, 𝑝 , and 𝑝 and 𝑃W are called the
target production and preceding set, respectively. The
direct total precedence relations on the set 𝑃 of
productions is defined as ≺^= 𝑃W, 𝑝 |𝑃W ⊆ℕ 𝑃 ∧ 𝑝 ∈
𝑃 ∧ 𝑃W ≺] 𝑝 .

 A direct total precedence relation specifies that a certain
graph composed of the right graphs of a subset of
productions contains a redex of the left graph of another
production. Note that the third constraint on 𝑓 emphasizes
that every production in 𝑃W takes part in 𝑓 with at least
one of its components in the right graph. If a subset 𝑃W of
𝑃 forms such a relation with a production	𝑝, then it means

18

Y. Zou et al. / Journal of Visual Language and Computing (2019) 15-28

DOI reference number: 10.18293/JVLC2019N1-017

that all the right graphs of 𝑃W must exactly comprise a
redex of the left graph of 𝑝 with each one containing at
least one redex of its components.

 A total precedence relation 𝑀, 𝑝 is composed of a set
of direct total precedence relations and a set of linking
relations on it. A compound precedence set consists of
three parts: a multiset 𝑇 of productions from set 𝑃 , a
multiset 𝐸 of direct total precedence relations, and a set 𝑅
of linking relations on 𝐸. A compound precedence set 𝑀,
together with a production 𝑝 , forms a total precedence
relation, on condition that a direct total precedence
relation is established between the first part of 𝑀 and the
production 𝑝.

2.3 Definition of Context

 The sets of partial or total precedence relations with
respect to a graph grammar establish an order of
production applications, which can be exploited to
discover potential situations in which any of the
productions is applicable for derivation. We refer to these
situations as contexts. Given two productions 𝑝@ and 𝑝B,
if 𝑝@ directly partially precedes 𝑝B, then 𝑝@. 𝑅 contains a
context of 𝑝B or merely a portion of a context, depending
on whether 𝑝B. 𝐿 consists of only one or at least two
maximal connected components. As for the former case,
{𝑝@} ≺] 𝑝B readily holds and a context of 𝑝B immediately
follows; whereas in the latter case, a subset of productions
involving 𝑝@ that directly totally precedes 𝑝B is pursued
so as to form a complete context for 𝑝B. As a third case, a
total precedence relation can be sought to build a rather
deeper complete context.

 Complete contexts of a production can be stratified in
terms of the levels of corresponding total precedence
relations from which they are generated. Roughly, a
complete context that is built in the light of a precedence
relation that corresponds to a rooted tree of depth 𝑖 is
called a level-𝑖 context, 𝑖 ≥ 1, and it degrades to a level-
1 context when the relation is a direct one.

 A complete context can be employed to extend the
respective production to which it pertains. This is done by
augmenting the context simultaneously to the both graphs
and properly linking the two parts together respectively.
A production 𝑝 equipped with a level-𝑖 context is often
abbreviated to a context-	𝑖 𝑝.

 Definition 5. Let 𝑔𝑔 ≔ 𝐴, 𝑃, 𝛺 be an RGG, 𝑝 ∈ 𝑃 ,
𝑀𝑐𝑐(𝑝. 𝐿) = 𝐶@,⋯ , 𝐶7 , and 𝑃W ⊆ℕ 𝑃 . If 𝑃W ≺] 𝑝 with
respect to some surjective mapping 𝑓:𝑀𝑐𝑐 𝑝. 𝐿 → 𝑆𝑡 =
𝐷@,⋯ , 𝐷h and a set of redexes 𝑋 = {𝑋i|𝑋i ∈
𝑅𝑑 𝑓 𝐶i , 𝐶i , 1 ≤ 𝑖 ≤ 𝑛}, then the pair 𝑈, 𝑍 is a level-
1 context of 𝑝 with respect to 𝑃W , 𝑓 , and 𝑋, denoted as
𝑐𝑡l 𝑃W, 𝑓, 𝑋 , where 𝑈 = 𝐷mW@nmnh , 𝐷mW = 	𝐷m\

𝑋pqpq∈rq , 𝐾m = 𝑙|𝑓 𝐶t = 𝐷m ∧ 1 ≤ 𝑙 ≤ 𝑛 , 𝑍 =
𝑍m@nmnh , and 𝑍m = 𝑒 ∈ 𝐷m. 𝐸| 𝑠 𝑒 ∈ 𝑋pq. 𝑉 ∧ 𝑡 𝑒 ∈

𝐷mW. 𝑉 ∨ 𝑠 𝑒 ∈ 𝐷mW. 𝑉 ∧ 𝑡 𝑒 ∈ 𝑋pq. 𝑉 ∧ 𝑘m ∈ 𝐾m . The
sets 𝑈 and 𝑍 are called the contextual graph and
contextual connection, respectively.

	6	receive
5:T

7:B

	10	send
3:T

4:B
if
1:T

receive
8:T

9:B
Stat
T

B

endif
T

2:B

B

:=

	5	receive
3:T

4:B

send
1:T

2:B

R9R9

if
1:T

Stat
T

B
Stat
T

B

endif
T

2:B

B

R2R2

:=

	6	receive
5:T

7:B

	10	send
3:T

4:B

if
1:T

receive
8:T

9:B
Stat
T

B

endif
T

2:B

B

	6	receive
5:T

7:B

	10	send
3:T

4:B

if
1:T

Stat
8:T

9:B
Stat
T

B

endif
T

2:B

B

(a) (b)

(c)

(d)

fork
1:T

Stat
T

B
Stat
T

B

join
T

2:B

B

	6	receive
5:T

7:B

	10	send
3:T

4:B
if
1:T

13	receive
8:T

9:B
Stat
T

B

endif
T

2:B

B
fork
11:T

Stat
14:T

15:B
Stat
T

B

join
T

12:B

B

	6	receive
5:T

7:B

	10	send
3:T

4:B
if
1:T

13	receive
8:T

9:B
Stat
T

B

endif
T

2:B

B
fork
11:T

send
14:T

15:B
Stat
T

B

join
T

12:B

B

Fig. 2. The contexts of a production and their extended productions. (a)
A level-1 context of 𝑝8 . (b) A level-2 context of 𝑝9 . (c) A level-1
context-equipped 𝑝8. (d) A level-2 context-equipped 𝑝9.

 Each component 𝐷mW of the contextual graph is the rest
graph of 𝐷m , a component of the right graph of some
production that contains one or more redexes 𝑋pq of the
components 𝐶pq, minus 𝑋pq, and each 𝑍m is the collection
of edges in 𝐷m that connect 𝐷mW to all the redexes 𝑋pq.

 Similar to Definition 5, the notion of level-	𝑖 context can
be recursively defined.

 Example 1. Two contexts of a production and their
extended productions.

 Two contexts at distinct levels of a production and their
respective extended productions are demonstrated in
Figure 2. A level-1 context of 𝑝8 originated from the
direct total precedence relation 𝑝2, 𝑝9 ≺] 𝑝8 is shown
in Figure 2(a), where the left component of the graph is
𝑅2 (the right graph of production 2), the right one is 𝑅9,
the subgraph enclosed by the green dashed ellipse is the
redex of 𝐿8 (the left graph of 𝑝8), and the context consists
of two parts 𝑈 and 𝑍 : 𝑈 is the rest of the whole graph

19

Y. Zou et al. / Journal of Visual Language and Computing (2019) 15-28

DOI reference number: 10.18293/JVLC2019N1-017

minus the redex and 𝑍 the set of thick red edges that
connect 𝑈 to the redex. The corresponding context-
equipped production, context-1 𝑝8, numbered as 𝑝11, is
depicted in (c), where the two subgraphs surrounded
respectively by green dashed eclipses are the isomorphic
image of the underlying production of 𝑝11.

 Figure 2(b) is a level-2 context of 𝑝9, which is created
based on the direct total precedence relation
𝑈𝑑 𝑝5, 𝑝11 ≺] 𝑝9 , or equivalently, the total
precedence relation 𝑈𝑙 𝑝5, 𝑝11 ≺ 𝑝9 , where 𝑈𝑑 𝑃
indicates the set of underlying productions of 𝑃 , and
𝑈𝑙 𝑃 refers to the underlying structure of 𝑃. In this graph,
the left and right component is 𝑅11 and 𝑅5, respectively,
the subgraph enclosed by the purple dashed rectangle is
the isomorphic image of 𝑈𝑑 𝑝11 , and the one
surrounded by the green dashed eclipse is the redex of the
left graph of 𝑝9 . In a similar way, the corresponding
context-equipped production, context-2 𝑝9, is illustrated
in (d).

3. Context Computation
 In this section, an approach is presented for the
computation of context in the RGG formalism, based on
the theoretical foundation reviewed in the preceding
section.

 The approach consists of four partially ordered
algorithms, of which the first three deal with the
computation of the set of direct partial precedence
relations, the set of direct total precedence relations, and
the set of total precedence relations with respect to a set
of productions, respectively, and the last handles the
computation of the contexts of a single production as well
as the corresponding extended productions.

3.1 Computation of Partial Precedence

Algorithm 1. Computation of partial precedence relations.
Input. A set 𝑃 of productions.
Output. The direct partial precedence relation on 𝑃.
{
 𝐶𝑚= = 𝑀𝑐𝑐(𝑝. 𝐿)l∈^ ;
 𝐶𝑚? = 𝑀𝑐𝑐(𝑝. 𝑅)l∈^ ;
 Create a two-dimensional array 𝑀 whose two indices range over
 𝐶𝑚= and 𝐶𝑚? respectively such that each element is initialized
 to an empty set ∅;
 for each 𝐶 ∈ 𝐶𝑚={
 for each 𝐶W ∈ 𝐶𝑚?{

𝑀 𝐶, 𝐶W = FindRedex 𝐶W, 𝐶 ;
 }
 }
 return 𝑀;
}

 The first algorithm generates the partial direct
precedence relation on a given set of productions. It
consists of collecting all the components of the left and

right graphs of the productions to create one set and
another respectively, and then finding all the redexes of
each component of the former in any one of the latter that
is taken as the host graph. The output is a matrix such that
each entry is assigned to a set of redexes (maybe empty)
with respect to a pair of components from the two distinct
sets that uniquely locate the entry in it. The function
FindRedex 𝐶W, 𝐶 returns all the redex of 𝐶 found in 𝐶W.

 For example, consider the RGG in Figure 1, the set of
direct partial precedence relations regarding 𝑝8 is the set
that is comprised of the following elements:
𝑝9, 𝑝8 ,	 𝑝8, 𝑝8 ,	 𝑝7, 𝑝8 , 𝑝2, 𝑝8 , 𝑝4, 𝑝9 ,	 𝑝5, 𝑝9 ,
𝑝6, 𝑝9 ,	 𝑝1, 𝑝9 ,	 𝑝8, 𝑝9 . This set also coincides with

the set of partial precedence relations of 𝑝8.

3.2 Computation of Direct Total Precedence

 The second algorithm figures out the direct total
precedence relation on a set 𝑃 of productions, on the basis
of the output of the first algorithm.

 First, it creates three one-dimensional arrays 𝐿𝑙𝑡 , 𝑅𝑙𝑡 ,
𝑇𝑝𝑑 and 𝐹𝑢𝑛 which share a same index that ranges over
𝑃, to store the upcoming data.

 Then, it arranges the components of the left graph of
each production 𝑝 into an ordered tuple form 𝐿𝑙𝑡 𝑝 in a
certain order, and for each element in this tuple, it
generates a corresponding set that gathers all the redexes
involved in the components from 𝐶𝑚?.

 Next, it conducts the Cartesian product 𝑅𝑙𝑡 𝑝 of these
sets of redexes in the same order as their counterparts in
𝐿𝑙𝑡 𝑝 . As a result, every tuple in 𝑅𝑙𝑡 𝑝 is a redex of
𝐿𝑙𝑡 𝑝 , since they are of the same length and each
constituent of the former is a redex of the element of the
latter to which it corresponds in terms of the tuple order.

 After that, by replacing each redex in a tuple of 𝑅𝑙𝑡 𝑝
with the underlying production whose right graph
includes a component that contains this redex, it acquires
a direct total precedence relation regarding 𝑝; this process
repeats until all the relations regarding 𝑝, which comprise
the set 𝐷𝑡𝑝 𝑝 , are collected. Meanwhile, it establishes a
mapping ℎ from 𝐷𝑡𝑝 𝑝 to a partition of 𝑅𝑙𝑡 𝑝 (i.e., a
collection of disjoint nonempty subset of it that have it as
their union) such that ℎ maps each tuple to the subset of
𝑅𝑙𝑡 𝑝 , each of whose elements can be transformed to this
tuple by the preceding replacement.

 Note that each element in 𝐷𝑡𝑝 𝑝 is a list of a multiset of
productions in a predefined order. Nevertheless, a direct
total precedence relation refers to a relation between a
multiset of productions without any order and a
production. To bridge this gap, it performs a partition of
𝐷𝑡𝑝 𝑝 in terms of such an equivalence relation that two
lists are equivalent if both of them correspond to a same

20

Y. Zou et al. / Journal of Visual Language and Computing (2019) 15-28

DOI reference number: 10.18293/JVLC2019N1-017

multiset, which produces 𝐷𝑝𝑠 𝑝 and 𝑙.

Algorithm 2. Computation of direct total precedence relations.
Input. A set 𝑃 of productions and the direct partial precedence
 relation on 𝑃.
Output. The direct total precedence relation on 𝑃.
{

Let 𝐿𝑙𝑡, 𝑅𝑙𝑡, 𝐷𝑡𝑝,	𝐷𝑝𝑠, 𝐹𝑢𝑛1 and 𝐹𝑢𝑛2 be one-dimensional
 arrays that share the same index which ranges over 𝑃;

 for each 𝑝 ∈ 𝑃{
 𝑘 = |𝑀𝑐𝑐(𝑝. 𝐿)|;
 Let 𝑀𝑐𝑐 𝑝. 𝐿 = 𝐶@,⋯ , 𝐶p ;
 𝐿𝑙𝑡 𝑝 = 𝐶@,⋯ , 𝐶p ;
 for each 𝐶 ∈ 𝑀𝑐𝑐(𝑝. 𝐿){
 𝑅𝑑𝑥 𝐶 = ∅;

 for each 𝐶W ∈ 𝐶𝑚?{
 𝑅𝑑𝑥 𝐶 = 𝑅𝑑𝑥 𝐶 ∪ 𝑀 𝐶, 𝐶W ;
 }

 }
𝑅𝑙𝑡 𝑝 = 𝑅𝑑𝑥 𝐶@ ×⋯×𝑅𝑑𝑥 𝐶p ;
𝐷𝑡𝑝 𝑝 = ∅;
for each 𝑘-tuple 𝑡@,⋯ , 𝑡p ∈ 𝑅𝑙𝑡 𝑝 {

 Generate a 𝑘-tuple 𝑝@,⋯ , 𝑝p such that
 𝑡i ∈ FindRedex 𝑀𝑐𝑐 𝑝i. 𝑅 , 𝐶i , 1 ≤ 𝑖 ≤ 𝑘;
 if 𝑝@,⋯ , 𝑝p ∉ 𝐷𝑡𝑝 𝑝 {
 ℎ 𝑝@,⋯ , 𝑝p = 𝑡@,⋯ , 𝑡p ;
 𝐷𝑡𝑝 𝑝 = 𝐷𝑡𝑝 𝑝 ∪ 𝑝@,⋯ , 𝑝p ;
 } else
 ℎ 𝑝@,⋯ , 𝑝p = ℎ 𝑝@,⋯ , 𝑝p ∪ 𝑡@,⋯ , 𝑡p ;
}
𝐹𝑢𝑛1 𝑝 = ℎ;
𝐷𝑝𝑠 𝑝 = ∅;
for each list 𝑞@,⋯ , 𝑞p ∈ 𝐷𝑡𝑝 𝑝 {
 Create a multiset 𝑆 = 𝑞@,⋯ , 𝑞p ;
 if 𝑆 ∉ 𝐷𝑝𝑠 𝑝 {
 𝑙 𝑆 = 𝑞@,⋯ , 𝑞p ;
 𝐷𝑝𝑠 𝑝 = 𝐷𝑝𝑠 𝑝 ∪ 𝑆 ;
 } else
 𝑙 𝑆 = 𝑙 𝑆 ∪ 𝑞@,⋯ , 𝑞p ;
}
𝐹𝑢𝑛2 𝑝 = 𝑙;

}
return 𝐿𝑙𝑡, 𝑅𝑙𝑡, 𝐷𝑡𝑝, 𝐷𝑝𝑠, 𝐹𝑢𝑛1, 𝐹𝑢𝑛2 ;

}

 In this way, it finally achieves the arrays 𝐷𝑝𝑠 and 𝐹𝑢𝑛2
that can generate the direct total precedence relations
regarding each production of 𝑃, together with the array
𝐹𝑢𝑛1 that can produce the set of redexes with respect to
any of these relations. For example, for each 𝑆 ∈ 𝐷𝑝𝑠 𝑝 ,
𝑆, 𝑝 is a direct total precedence relation, and

ℎ 𝑄�∈t � is the set of all the possible redexes.

 An underlying assumption for the algorithm is that any
component in 𝐶𝑚= or 𝐶𝑚? , as well as any redex of a
component from 𝐶𝑚= in another from 𝐶𝑚?, is uniquely
identified. This is applicable from the perspective of
algorithm implementation, as it can be achieved by
assigning to each node of a production a unique number
as its identity, and representing each redex as a triple
𝑆, 𝑓, 𝑖𝑑 with 𝑆 the involved subgraph, i.e., the redex

itself, 𝑓 the underlying mapping, and 𝑖𝑑 the identifier of
the right graph that contains the redex.

	5	receive
3:T

4:B

send
1:T

2:B

R9R9

begin

Stat
T

B

end
T

B

R1R1
(a) (b)

	5	receive
3:T

4:B

send
1:T

2:B

R9R9

if
1:T

Stat
T

B
Stat
T

B

endif
T

2:B

B

R2R2

	5	receive
3:T

4:B

send
1:T

2:B

R9R9

Stat

Stat
T

2:B

B

R4R4

(c) (d)

	5	receive
3:T

4:B

send
1:T

2:B

R9R9

fork
1:T

Stat
T

B
Stat
T

B

join
T

2:B

B

R5R5

1:T

	5	receive
3:T

4:B

send
1:T

2:B

R9R9

Stat
1:T

B

end
T

R4R4
2:B

	5	receive
3:T

4:B

send
1:T

2:B

R9R9

fork
1:T

Stat
T

B
Stat
T

B

join
3:T

4:B

2:B

R6R6
(e) (f)

Fig. 3. Some level-1contexts of 𝑝8.

 For example, consider the RGG illustrated in Figure 1,
the direct total precedence relations with 𝑝8 being the
target production are as follows: 𝑝1, 𝑝9 , 𝑝8 ,
𝑝2, 𝑝9 , 𝑝8 , 𝑝4, 𝑝9 , 𝑝8 , 𝑝5, 𝑝9 , 𝑝8 ,
𝑝6, 𝑝9 , 𝑝8 , 𝑝1, 𝑝8 , 𝑝8 , 𝑝2, 𝑝8 , 𝑝8 ,
𝑝4, 𝑝8 , 𝑝8 , 𝑝5, 𝑝8 , 𝑝8 , 𝑝6, 𝑝8 , 𝑝8 ,
𝑝1, 𝑝7 , 𝑝8 , 𝑝2, 𝑝7 , 𝑝8 , 𝑝4, 𝑝7 , 𝑝8 ,
𝑝5, 𝑝7 , 𝑝8 , 𝑝6, 𝑝7 , 𝑝8 . The preceding set of the

relations includes two productions, each of whose right
graph contains a component, and these two components
constitutes a graph that contains a redex of the target
production’s left graph. Therefore, the number of total
precedence relations regarding 𝑝8 is 5×3 = 15 . The
algorithm figures out all the total precedence relations
with any production from the input production set
assuming the role of target production.

 Figure 3 illustrates some of the level-1 contexts
regarding 𝑝8. These six level-1 contexts correspond to the
first five direct total precedence relations with 𝑝8 being
the target production. Note that 𝑝4, 𝑝9 , 𝑝8 accounts
for two of them, i.e., Figure 3(c) and (d), as there are two
options for the selection of node “Stat”. Readily, the total
number of level-1 contexts corresponding to the direct

21

Y. Zou et al. / Journal of Visual Language and Computing (2019) 15-28

DOI reference number: 10.18293/JVLC2019N1-017

total precedence relations regarding 𝑝8 can be counted as
6×3 = 18.

3.3 Computation of Total Precedence

 The third algorithm describes the procedure of
constructing all the total precedence relations of depth
𝑘 + 1 based on those of depth no more than 𝑘 , with
respect to a set 𝑃 of productions, where 𝑘 ≥ 1. Readily,
the set of total precedence relations of any depth can be
recursively generated from the fundamental set of direct
total precedence relations by using it.

Algorithm 3. Computation of total precedence relations.
Input. A set 𝑃 of productions, ≼^ the direct total precedence relation
 on 𝑃, and the set 𝑇𝑝𝑑 of total precedence relations of depth
 no more than 𝑘, where 𝑘 ≥ 1.
Output. The set of total precedence relations of depth 𝑘 + 1.
{
 Let 𝑃𝑡𝑝 and 𝑇𝑝𝑟 be one-dimensional arrays whose indexes range
 over 𝑃;
 Let 𝑇𝑝𝑑p be the set of total precedence relations of depth 𝑘;
 for each 𝑝 ∈ 𝑃{
 𝑃𝑡𝑝 𝑝 = 𝑛𝑢𝑙𝑙 ; // Initialize the elements of 𝑃𝑡𝑝;
 }
 for each 𝑝𝑠 ∈ 𝑇𝑝𝑑{
 Let 𝑒 = 𝑃W, 𝑝W be the root element of 𝑝𝑠;
 𝑃𝑡𝑝 𝑝W = 𝑃𝑡𝑝 𝑝W ∪ 𝑝𝑠 ;
 }
 for each 𝑝 ∈ 𝑃{
 𝑃𝑡𝑟 𝑝 = ∅;
 for each 𝑒W = 𝑃WW, 𝑝 ∈≼^{
 Let 𝑃WW = 𝑝@,⋯ , 𝑝p ; //𝑃WW is a multiset;

 𝐶𝑟𝑡 = 𝑃𝑡𝑝 𝑝@ ×⋯×𝑃𝑡𝑝 𝑝p ;
 𝐸 = 𝑒W ;
 𝑅 = ∅;
 for each 𝑡@,⋯ , 𝑡p ∈ 𝐶𝑟𝑡 such that
 ∃𝑖, 𝑗 𝑡i ≠ 𝑛𝑢𝑙𝑙 ∧ 𝑡m ∈ 𝑇𝑝𝑑p { //1 ≤ 𝑖 ≤ 𝑘;
 Create a mapping 𝑓 with domain 𝑃WW;
 𝐷 = ∅; //	𝐷 is a multiset;
 for each 𝑡i{ //1 ≤ 𝑖 ≤ 𝑘;
 if 𝑡i = 𝑛𝑢𝑙𝑙
 𝑓 𝑝i = 𝑛𝑢𝑙𝑙;
 else {
 Let 𝑡i = 𝐸i, 𝑅i , and 𝑒i be the root element;
 𝑓 𝑝i = 𝑒i;
 𝐷 = 𝐷 ∪ 𝑒i ;
 𝐸 = 𝐸 ∪ 𝐸i;
 𝑅 = 𝑅 ∪ 𝑅i;
 }
 }
 Construct a linking relation 𝑟 = 𝑒W, 𝐷, 𝑓 ;
 𝑅 = 𝑅 ∪ 𝑟 ;
 𝑃𝑡𝑟 𝑝WW = 𝑃𝑡𝑟 𝑝WW ∪ 𝐸, 𝑅 ;
 }

 }
 }
 return 𝑇𝑝𝑟;
}

 The algorithm consists of two tasks. First, it partitions
the set 𝑇𝑝𝑑 into |𝑃| distinct subsets in terms of the root
node of the rooted tree that each total precedence relation
(i.e., a precedence structure) forms, which comprise the

set 𝑃𝑡𝑝.

 Then, for any production 𝑝 in 𝑃, it constructs the set of
all the total precedence relations of depth 𝑘 + 1 whose
root elements share the same head 𝑝. More precisely, this
set is the union of the subsets, each of which includes
those relations whose root elements are a same direct total
precedence relation with 𝑝 as the head. Thus, in terms of
each of these relations, say 𝑃WW, 𝑝 , the algorithm
constructs a corresponding subset of all the relations of
depth 𝑘 + 1 with 𝑃WW, 𝑝 as the root element.

e1

e4

p8

p4 p9

p4 p8

p9p2

e3

p5

e2

(c)

p4

p5

p9

p4 p8

p9p2

(a) (b)

Fig. 4. The rooted trees of different depths that correspond to
precedence structures.

 To this end, it first conducts the Cartesian product of
|𝑃WW| selected elements from 𝑃𝑡𝑝 whose indexes exactly
comprises the multiset 𝑃WW. Second, it screens the ordered
tuples in the product to make sure that each chosen one
can be utilized to generate a proper linking mapping from
𝑃WW to the union of 𝑛𝑢𝑙𝑙 and the set of root elements of
its constituents, and that the resulting precedence structure
must be of depth 𝑘 + 1. The latter is guaranteed when one
constituent of the tuple is of depth 𝑘 . Third, for each
chosen tuple, it generates the linking relation, which is
composed of the head 𝑃WW, 𝑝 , the set of tails, i.e., the root
elements of the constituents of the tuple, and the newly
created linking mapping, and then constructs the
consequent precedence structure 𝐸, 𝑅 , where 𝐸 and 𝑅
comprise all the involved direct total precedence relations
and relevant linking relations, respectively.

22

Y. Zou et al. / Journal of Visual Language and Computing (2019) 15-28

DOI reference number: 10.18293/JVLC2019N1-017

 A total precedence relation is commonly represented as
a precedence structure. A precedence structure can
visually form a rooted tree. In Figure 4, (a), (b), and (c)
show three rooted trees that correspond to three
precedence structures, called 𝑝𝑠@ , 𝑝𝑠B , and 𝑝𝑠� ,
respectively. Apparently, they are of depth 1, 2, and 3,
respectively.

 Example 2. A precedence structure 𝑝𝑠� ≔ 𝐸, 𝑅 on
the production set 𝑃 of the RGG in Figure 1, where:

 • 𝐸 = 𝑒@, 𝑒B, 𝑒�, 𝑒� , in which 𝑒@ = 𝑝4, 𝑝9 , 𝑝8 , 𝑒B =
𝑝5 , 𝑝4 , 𝑒� = 𝑝4, 𝑝8 , 𝑝9 , 𝑒� = 𝑝2, 𝑝9 , 𝑝8 ;

 • 𝑅 = 𝑟@, 𝑟B , in which 𝑟@ = 𝑒@, 𝑒B, 𝑒� , 𝑓@ with
𝑓@ 𝑝4 = 𝑒B and 𝑓@ 𝑝9 = 𝑒� , 𝑟B = 𝑒�, 𝑒� , 𝑓B with
𝑓B 𝑝4 = 𝑛𝑢𝑙𝑙 and 𝑓B 𝑝8 = 𝑒�;

 • 𝑒� = 𝑒@.

 In the rooted tree corresponding to 𝑝𝑠�, as depicted in
Figure 4(c), the four fragments enclosed by red dashed
rectangles are the elements 𝑒@ , 𝑒B , 𝑒� , and 𝑒� ,
respectively, which are direct total precedence relations,
i.e., precedence structures of depth 1.

 The subtree enclosed by the green dashed rectangle
corresponds to the precedence structure 𝑝𝑠B.

 Given the set of total precedence relations of depth no
more than 2 including 𝑝𝑠@ and 𝑝𝑠B (the set of direct total
precedence relations involved) as input, the algorithm will
generate a set of total precedence relations of depth no
more than 3, where 𝑝𝑠� is involved. That is, 𝑝𝑠� is created
on the basis of 𝑝𝑠@ and 𝑝𝑠B, together with the direct total
precedence relation 𝑒@.

3.4 Computation of Context

 It is known that a total precedence relation, i.e., a
precedence structure 𝐸, 𝑅 , forms a rooted tree in such a
way that each direct total precedence relation in 𝐸
corresponds to a subtree of depth 1 and they are glued to
each other in terms of the linking relations in 𝑅.

 The fourth algorithm calculates all the level-	𝑖 contexts
of a production and respective extended productions in
terms of a total precedence relation, i.e., a precedence
structure, with respect to it. Readily, the diagram of a
rooted tree corresponding to a precedence structure offers
a more comprehensible perspective for the algorithm.

 The algorithm is composed of two consecutive tasks.
The first task is to transform a total precedence relation (a
rooted tree) into a set of direct total precedence relations
(rooted trees of depth 1).

 To this end, the algorithm creates an empty set, adds the
rooted tree to it, and repeats the subsequent four steps until
all the elements in it become rooted trees of depth 1. First,

it randomly selects a rooted tree from the set and locates
an outmost subtree of length 1 (with the root node, say 𝑝);
then, it figures out all the possible context-	𝑖 𝑝’s according
to the subtree, where 	𝑖 ≥ 1 ; next, for each of those
extended productions, say 𝑝W, it constructs a new tree from
the original one by pruning the subtree except the root
(this node is preserved since it is also a leaf of another
subtree to which this one is linked via a linking relation in
𝑅) from it and substituting 𝑝W for the root 𝑝, and puts it
into the set; and finally, it deletes the originally selected
tree from the set. After that, the set includes only rooted
trees of depth 1, any of which corresponds to a direct total
precedence relation.

Algorithm 4. Computation of contexts and extended productions.
Input. A set 𝑃 of productions, a total precedence relation 𝑀, 𝑝� =
 𝐸�, 𝑅� of depth ℎ.
Output. The level-	ℎ contexts of 𝑝� and corresponding extended
 productions.
{
 𝐶𝑝𝑠 = 𝐸�, 𝑅� ;

while (∃𝑝𝑠 ∈ 𝐶𝑝𝑠 such that 𝑝𝑠 is not a direct total precedence
relation) {

 Let 𝑝𝑠 = 𝐸, 𝑅 ;
 Find an element 𝑒 ∈ 𝐸 such that 𝑒 is not the head of any
 linking relation in 𝑅;
 Let 𝑒 = 𝑃W, 𝑝 and 𝑃W = 𝑝@,⋯ , 𝑝p ; //	𝑘 ≥ 1;
 Let 𝑟 = 𝑒W, 𝐷, 𝑓 ∈ 𝑅 such that 𝑒 ∈ 𝐷;
 Let 𝑒W = 𝑃WW, 𝑝WW ;
 Let 𝐹𝑢𝑛1 𝑝 = ℎ, 𝐹𝑢𝑛2 𝑝 = 𝑙;
 Let 𝑙 𝑃W = 𝑄@,⋯ , 𝑄h ; //𝑚 ≥ 1;
 𝐶𝑝𝑠 = 𝐶𝑝𝑠\ 𝑝𝑠 ;
 for each 𝑡@,⋯ , 𝑡p ∈ ℎ 𝑄@ ∪ ⋯∪ ℎ 𝑄h {

 Construct a level-	𝑖 context 𝑈, 𝑍 , 𝑖 ≥ 1;
 Construct a context-	𝑖 𝑝 with 𝑈, 𝑍 ,	called 𝑝W;
 𝑃WWW = 𝑃WW\ 𝑝 ∪ 𝑝W ;
 𝑒WW = 𝑃WWW, 𝑝WW ;
 𝐷W = 𝐷\ 𝑒 ;

 Create a linking mapping 𝑓W: 𝑃WWW → 𝐷W ∪ 𝑛𝑢𝑙𝑙 such that
 𝑓W 𝑝W = 𝑛𝑢𝑙𝑙, and for any other production 𝑝WWW ∈ 𝑃WWW,
 𝑓W 𝑝WWW = 𝑓 𝑝WWW ;
 𝑟W = 𝑒WW, 𝐷W, 𝑓W ;
 𝐸W = 𝐸\ 𝑒, 𝑒W ∪ 𝑒WW ;
 𝑅W = 𝑅\ 𝑟 ∪ 𝑟W ;
 Construct a precedence structure 𝑝𝑠W = 𝐸W, 𝑅W ;
 𝐶𝑝𝑠 = 𝐶𝑝𝑠 ∪ 𝑝𝑠W ;

 }
 𝐶𝑝𝑠 = 𝐶𝑝𝑠\ 𝑝𝑠 ;
 }
 𝐶𝑛𝑡 = ∅;
 𝑋𝑑𝑝 = ∅;
 for each 𝑝𝑠 ∈ 𝐶𝑝𝑠{
 Construct a level-	ℎ context 𝑈, 𝑍 ;
 𝐶𝑛𝑡 = 𝐶𝑛𝑡 ∪ 𝑈, 𝑍 ;
 Construct a context-	ℎ 𝑝� with 𝑈, 𝑍 ,	called 𝑞;
 𝑋𝑑𝑝 = 𝑋𝑑𝑝 ∪ 𝑞 ;
 }
 return 𝐶𝑛𝑡, 𝑋𝑑𝑝 ;
}

In the second task, it constructs, for each element in the
set, a level-	ℎ context and based on it, an accompanying
extended production as well.

23

Y. Zou et al. / Journal of Visual Language and Computing (2019) 15-28

DOI reference number: 10.18293/JVLC2019N1-017

fork
1:T

Stat
T

B
Stat
T

B

join
T

2:B

B

R5R5

	5	receive
3:T

4:B

send
1:T

2:B

R9R9

if
1:T

Stat
T

B
Stat
T

B

endif
T

2:B

B

R2R2

Stat
1:T

B

Stat
T

2:B
	6	receive

5:T

7:B

	10	send
3:T

4:B
if
1:T

receive
8:T

9:B
Stat
T

B

endif
T

2:B

B

Stat
1:T

B

Stat
T

2:B
	6	receive

5:T

7:B

	10	send
3:T

4:B
if
1:T

			receive
8:T

9:B
Stat
T

B

endif
T

2:B

B

(f)

fork
1:T

Stat
3:T

4:B
Stat
T

B

join
T

2:B

B

fork
1:T

Stat
3:T

B
Stat
T

B

join
T

2:B

B

:=

Stat
T

4:B

Stat
11:T

14:B

Stat
T

12:B

	6	receive
5:T

7:B

	10	send
3:T

4:B
if
1:T

13	receive
8:T

9:B
Stat
T

B

endif
T

2:B

B

:=

:=

(g)

fork
1:T

Stat
3:T

B
Stat
T

B

join
T

2:B

B

Stat
T

4:B

send
11:T

14:B

Stat
T

12:B

	6	receive
5:T

7:B

	10	send
3:T

4:B
if
1:T

13	receive
8:T

9:B
Stat
T

B

endif
T

2:B

B
Stat
11:T

B

send
14:T

12:B

	6	receive
5:T

7:B

	10	send
3:T

4:B
if
1:T

13	receive
8:T

9:B
Stat
T

B

endif
T

2:B

B

(h)

fork
1:T

Stat
3:T

B
Stat
T

B

join
T

2:B

B

Stat
T

4:B

fork
1:T

Stat
3:T

B

Stat
T

B

join
T

2:B

B

Stat
T

4:B

send
11:T

14:B

Stat
T

12:B	6	receive
5:T

7:B

	10	send
3:T

4:B
if
1:T

13	receive
8:T

9:B
Stat
T

B

endif
T

2:B

B
Stat
11:T

B

send
14:T

12:B

	6	receive
5:T

7:B

	10	send
3:T

4:B
if
1:T

	13	receive
8:T

9:B
Stat
T

B

endif
T

2:B

B

(j)

fork
1:T

Stat
3:T

B

Stat
T

B

join
T

2:B

B

Stat
T

4:B

:=

(l)

send
11:T

14:B

Stat
T

12:B

	6	receive
5:T

7:B

	10	send
3:T

4:B
if
1:T

13	receive
8:T

9:B
Stat
T

B

endif
T

2:B

B

Stat
11:T

B

Stat
14:T

12:B
	6	receive

5:T

7:B

	10	send
3:T

4:B
if
1:T

13	receive
8:T

9:B
Stat
T

B

endif
T

2:B

B
Stat
11:T

B

send
14:T

12:B
	6	receive

5:T

7:B

	10	send
3:T

4:B
if
1:T

13	receive
8:T

9:B
Stat
T

B

endif
T

2:B

B

fork
15:T

Stat
17:T

20:B
Stat
T

B

join
T

16:B

B

Stat
T

18:B

	19	send
11:T

14:B

Stat
T

12:B

	6	receive
5:T

7:B

	10	send
3:T

4:B
if
1:T

13	receive
8:T

9:B
Stat
T

B

endif
T

2:B

B

fork
15:T

receive
17:T

20:B
Stat
T

B

join
T

16:B

B

Stat
T

18:B

	19	send
11:T

14:B

Stat
T

12:B

	6	receive
5:T

7:B

	10	send
3:T

4:B
if
1:T

13	receive
8:T

9:B
Stat
T

B

endif
T

2:B

B

(a) (b) (c)

(d) (e)

(i)

(k)

Fig. 5. Computation of Contexts. (a) A level-1 context of 𝑝4. (b) A level-1 context of 𝑝8. (c) A context-1 𝑝4. (d) A level-2 context of 𝑝9. (e) A
context-2 𝑝9. (f) A level-2 context of 𝑝9. (g) A context-2 𝑝9. (h-k) Four level-3 contexts of 𝑝8. (l) A context-3 𝑝8.

24

Y. Zou et al. / Journal of Visual Language and Computing (2019) 15-28

DOI reference number: 10.18293/JVLC2019N1-017

 Example 3. Computation of contexts.

 Figure 5 depicts some of the contexts and context-
equipped productions with respect to the RGG discussed
above, which provides a visual demonstration of the
computation process of Algorithm 4.

 In each part of Figure 5, the subgraph enclosed by a
green dashed eclipse is the left or right graph of some
production, and the subgraph enclosed by a purple dashed
rectangle or eclipse is the underlying production of a
context-equipped production.

 Figure 5(a) shows a level-1 context of 𝑝4, which is the
output of Algorithm 4 when taking the direct total
precedence relation 𝑝𝑠@ whose precedence structure is
given in Figure 4(a) as input. The context-equipped 𝑝4,
numbered as 𝑝10, is shown in (c). It is also abbreviated to
context-1	𝑝4.

 Figure 5(b) presents a level-1 context of 𝑝8, with respect
to the direct total precedence of 𝑒� whose precedence
structure is shown in Figure 4(c). The corresponding
context-equipped 𝑝8 (named by 𝑝11 above) is given in
Figure 2(c). Taking the total precedence relation 𝑝𝑠B
(comprised of 𝑒� and 𝑒�) shown in Figure 4(b) as input,
Algorithm 4 generates two level-2 contexts of 𝑝9 , as
depicted in (d) and (f). That is, based on the right graphs
of 𝑝4 and 𝑝11 (whose underlying production is 𝑝8), the
algorithm produces all the level-2 contexts of 𝑝9. The
quantity of contexts depends on the number of options
when creating the left graph of the given production from
other productions’ right graphs. Accordingly, two
context-equipped 𝑝9 are illustrated in (e) and (g), and
numbered as 𝑝12 and 𝑝13, respectively.

 The computation of the total precedence relation 𝑝𝑠� is
on the basis of 𝑝𝑠@ and 𝑝𝑠B. In a similar way, when taking
the total precedence relation 𝑝𝑠� as input, Algorithm 4
generates four level-3 contexts of 𝑝8, as shown in Figure
5(h)-(k). That is, the contexts are produced based on the
right graphs of 𝑝10 and 𝑝12 , or of 𝑝10 and 𝑝13 . A
context-equipped 𝑝8 that corresponds to the level-3
context in (h) is demonstrated in (l).

4. Complexity Analysis
 In this section, the complexities of the proposed
algorithms in the preceding section are analyzed.

 Algorithm 1 calls a procedure FindRedex 𝐻, 𝐺 to
generate the set of subgraphs of 𝐻 that are redexes of the
marked graph 𝐺 . A procedure similar to the callee was
proposed in [12] with time complexity 𝑂 |𝐻||8| , where
|𝐻| or |𝐺| denotes the number of nodes involved in it.
Then, the time complexity of the algorithm directly
follows:

 Proposition 1. The time complexity of Algorithm 1 is
𝑂 𝑚B𝑛B𝑟� , where 𝑚 is the number of productions in 𝑃,
𝑛 is the maximal number of components in the left or right
graphs of productions in 𝑃, and 𝑟 is the maximal number
of nodes in any of the components.

 Proposition 2. The time complexity of Algorithm 2 is
𝑂 𝑚𝑛 7�@𝑟�7 , where 𝑚, 𝑛 and 𝑟 are as in Proposition
1.

 Proof. The algorithm mainly consists of a for-loop that
nests other three sequential for-loops.

 In the outmost loop, the first nested for-loop also nests
another for-loop, which takes time 𝑂 𝑚𝑛B . The line next
to it is the calculation of a 𝑘-ary Cartesian product over
sets of redexes of components in 𝑝. 𝐿 , each of which
contains at most 𝑚𝑛×𝑟� elements, where 𝑚𝑛 and 𝑟� are
the maximal number of elements in 𝐶𝑚? and 𝑀 𝐶, 𝐶W ,
respectively. Thus, the time complexity is 𝑂 𝑚𝑛𝑟� 7 ,
since 𝑘 equals to 𝑛 in the worst case.

 In the second nested for-loop, the first line takes 𝑂 𝑛 ,
because the production to which each redex in the ordered
tuple of 𝑅𝑙𝑡 corresponds is clearly indicated beforehand,
according to the underlying assumption. Therefore, this
for-loop takes time 𝑂 𝑛 𝑚𝑛𝑟� 7 .

 Moreover, the time complexity of the last nested for-
loop is at most 𝑂 𝑛 𝑚𝑛𝑟� 7 , for the cardinality of
𝐷𝑡𝑝 𝑝 is no more than that of 𝑅𝑙𝑡 𝑝 .

 In summary, the nested part of the outmost loop takes
time 𝑂 𝑛 𝑚𝑛𝑟� 7 . Consequently, the time complexity
of the whole procedure is 𝑂 𝑚𝑛 7�@𝑟�7 , which is the
product of the time complexity of the outmost for-loop
and that of its nested part. ∎

Proposition 3. The time complexity of Algorithm 3 is
𝑂 𝑚7�B𝑛𝑙7 , where 𝑚 and 𝑛 are as in Proposition 1,
and 𝑙 is the cardinality of 𝑇𝑝𝑑.

Proof. The algorithm consists of three sequential for-
loops. It is evident that the first two loops take 𝑂 𝑛 and
𝑂 𝑙 , respectively.

 The last one is a four-layer nested for-loops. According
to the structure, its time complexity can be expressed as
𝑂 𝑑@𝑑B𝑑�𝑑� , where 𝑑@, 𝑑B, 𝑑� and 𝑑� are the maximal
number of times traversed in the outmost, second, third,
and inmost for-loop, respectively. We proceed inwards
from outside of the structure.

 First, 𝑑@ is the number of productions in 𝑃, that is, 𝑑@ =
𝑚. Next, 𝑑B equals to the cardinality of ≼^, which is no
more than 𝑚×𝑚7 = 𝑚7�@ . It is obvious that 𝑑� is
actually the cardinality of the Cartesian product over 𝑘
sets from 𝑃𝑡𝑝, where 𝑘 denotes the number of tails in a
direct total precedence relation. Since 𝑃𝑡𝑝 is a partition of

25

Y. Zou et al. / Journal of Visual Language and Computing (2019) 15-28

DOI reference number: 10.18293/JVLC2019N1-017

𝑇𝑝𝑑, each element of the former must be a subset of the
latter. Thus, 𝑑� < 𝑙7. As for the inmost loop, 𝑑� readily
equals to 𝑛, which is exactly the same as the exponent
appearing in the preceding inequation.

 Consequently, the last structure takes 𝑂 𝑚7�B𝑛𝑙7 , i.e.,
the product of the complexities of the four constituents.
Readily, it is also the time complexity of the algorithm.
∎

Theorem 1. The time complexity of Algorithm 4 is
𝑂 𝑛! 𝑟�7 B7 ¡¢ , where 𝑛 and 𝑟 are as in Proposition 1,
and ℎ is the depth of the input total precedence relation.

Proof. The main part of the algorithm is a two-layer
structure: a for-loop nested within a while-loop, followed
by another for-loop.

 As to the former, the total number of times it is traversed
is the product of that of the outmost while-loop and of the
inmost for-loop. We consider the while-loop first. In the
worst case, the input total precedence relation 𝐸�, 𝑅�
corresponds to a complete 𝑛-ary rooted tree of depth ℎ.
Then, the cardinality of 𝐸�, i.e., the number of subtrees of
depth 1 that compose it, can be expressed as:

 1 + 𝑛 + ⋯+ 𝑛£¤@ = 7 ¤@
7¤@

 (1)

 Suppose the number of times the inmost for-loop is
traversed at the worst case be 𝑤. In each traversal of the
while-loop, it takes a rooted tree out from 𝐶𝑝𝑠, and then
puts as many as 𝑤 revised ones that comprise one less
subtrees back into it. This process is repeated until each
element in 𝐶𝑝𝑠 becomes a rooted tree of depth 1, i.e., it
only involves a root element. Consequently, the maximal
number of times the loop is traversed can be expressed as:

 1 + 𝑤 + 𝑤B⋯+ 𝑤
¦ ¡¢
¦¡¢ 	¤@ = §

¦ ¡¢
¦¡¢ 	¤@
§¤@

 (2)

 Further inference to Formula (2) can be done as follows:

 §
¦ ¡¢
¦¡¢ 	¤@
§¤@

< §
§¤@

⋅ 𝑤
¦ ¡¢
¦¡¢ ¤@ = §

§¤@
⋅ 𝑤

¦ ¦ ¡¢¡¢
¦¡¢

 < §
§¤@

⋅ 𝑤B7 ¡¢ = 𝑂 𝑤B7 ¡¢

Note that 𝑤 exactly equals to the number of extended
context-1 productions that can be produced from a direct
total precedence relation, by Definition 5. In the worst
case, the relation consists of one head and 𝑛 tails, and
each component of the latter’s right graphs contains 𝑟�
redexes of any component of the former’s left graph. To
be exact, of the loop variable 𝑡@,⋯ , 𝑡p for the for-loop,
each element 𝑡i can be any of the 𝑟� redexes of the
corresponding component of the left graph in any
component of any tail’s right graph, where 1 ≤ 𝑖 ≤ 𝑘, and
𝑘 = 𝑛. Thus, for each permutation of the tails, there are

𝑟� 7 = 𝑟�7 possible ordered tuples, where 𝑛 is the
maximal number of choices for selecting one component
from each tail, and 𝑟� is the maximal number of redexes
in each component. Furthermore, the number of
permutations for the tails is 𝑛!. Therefore, 𝑤 = 𝑛! 𝑟�7 .
Substituting the result for 𝑤 in Formula (2) yields
𝑛! 𝑟�7 B7 ¡¢.

 As to the latter, the number of times it is traversed is
𝑛£¤@×𝑛 = 𝑛£.

 Consequently, the time complexity of the algorithm is
𝑂 𝑛! 𝑟�7 B7 ¡¢ . ∎

5. Discussion

5.1 Applicability of the Algorithms

 From the perspective of time complexity, the above four
algorithms seem rather complicated at first glance.
Nevertheless, they are applicable in practical scenarios
due to the following three causes.

 First, the parameters that characterize a graph grammar
are usually small constants, and cannot change in any
computation. That is, the parameters are the nature of a
graph grammar that will not vary with host graphs in
parsing or derivation processes under different situations.

 Second, the worst cases theoretically assumed in the
analysis of the complexities can rarely happen in practice,
and they are frequently quite small number in practical
applications. Notice that the number of redexes with
respect to a direct total precedence relation is surprisingly
𝑛! 𝑟�7. However, this amount is merely a theoretical upper
bound that accounts for all the possibly matched
subgraphs, no matter in which situation all the redexes can
simultaneously occur. An extreme situation in this case is
a host graph where all the nodes in the host graph are
labeled with the same symbol and the directed edges
between them are completely connected. However, such
host graphs can rarely be encountered in practice. As an
example, consider the graph grammar depicted in Figure
1, the number of redexes with respect to a direct total
precedence relation is theoretically 2! 4B×� , whereas in
the practical computation it is less than 10 in most cases.

 Third, the contexts of a graph grammar can be achieved
as the output from merely one execution of the algorithms,
and then they can be repeatedly utilized in the process of
derivation and parsing of this grammar at any time
afterwards.

5.2 Application of Context

 Context offers a concrete way for designers or users to
grasp the meaning of an implicit graph grammar by
directly observing the productions instead of enumerating

26

Y. Zou et al. / Journal of Visual Language and Computing (2019) 15-28

DOI reference number: 10.18293/JVLC2019N1-017

the members of the language. A context of a production
characterizes a potential circumstance, under which it can
be applied for derivation, a means usually employed to
generate members of the language. Conversely, the
context can also be regarded as a circumstance under
which the production can be applied for parsing. Any
production is self-explanatory for what it is for, whereas
the contexts at distinct levels indicate at which situations
it can be applied. These two aspects together clearly show
the intension or meaning of a production, from the point
view of derivation. Consequently, contexts can facilitate
the comprehension of a graph grammar by synthesizing
the meanings of its constituents so as to constitute the
overall characteristics of the members of its language.

 Moreover, context can facilitate the improvement of
parsing performance. A general parsing algorithm is
always a necessity for graph grammar formalisms.
Backtracking is the main cause of high time complexity
of a general parsing algorithm. In the process of parsing a
host graph, when some unexpected (false positive)
redexes are found and the corresponding reductions are
conducted accordingly, then a final graph may be
obtained that is not the initial graph of the involved graph
grammar and to which no more reductions can be done.
This situation gives rise to backtracking. A redex is called
false positive if the situation in which the redex lies does
not match any of the contexts of the production.
Consequently, identifying the false positive redexes so as
to avoid unexpected reductions is an effective way to
improve parsing performance. Apparently, context
matching can serve this purpose.

 Noticeably, the proposed approach to context
computation can be directly applied to practical graph
grammars specifying real-world visual languages, e.g.,
BPMN (Business Process Model and Notation), ER
diagrams, UML diagrams, WebML (Web Modeling
Language), chemical diagrams, and so on, since these
graph grammars are concrete examples of the underlying
formalisms where the specification of nodes and edges in
productions is entirely inherited from the formalisms.

6. Conclusion
 On the basis of RGG, a representative of implicit
context-sensitive graph grammar formalism, this paper
has proposed an approach to the computation of context
according to the formal definition of context, and
presented the time complexities of the partially ordered
algorithms involved. The method can facilitate the
applicability of implicit graph grammars, as contexts of
the productions are essential information for the
comprehension of graph grammars and the improvement
of parsing performance of parsing algorithms. Besides,
the method can be generalized to other implicit context-

sensitive graph grammar formalisms without much effort.

 In the future, further investigation will be conducted to
explore more application scenarios of context, and a
support system for context computation and visualization
in a context-sensitive graph grammar framework will be
developed as well.

Acknowledgments

 This work is supported in part by the National Science
Foundation of China under grants 61170089 and
91318301.

References

[1] Chang S. K. (1987) “Visual Languages: A Tutorial and Survey”.
IEEE Software, 4(1), pp. 29–39.

[2] Marriott K. (1994) “Constraint Multiset Grammars”. IEEE
Symposium on Visual Languages, St. Louis, Missouri, pp. 118–
125.

[3] Ferrucci F., Pacini G., Satta G., et al. (1996) “Symbol-Relation
Grammars: A Formalism For Graphical Languages”. Information
and Computation, 131(1), pp. 1–46.

[4] Chang S. K. (1971) “Picture Processing Grammar and Its
Applications”. Information Sciences, Vol. 3, pp.121–148.  

[5] Lakin F. (1987) “Visual Grammars for Visual Languages”. 7th
National Conference on Artificial Intelligence, pp. 683–688.

[6] You K. C., Fu K. S. (1979) “A Syntactic Approach to Shape
Recognition Using Attributed Grammars”. IEEE Transactions on
Systems, Man and Cybernetics, 9(6), pp. 334–345.

[7] Costagliola G., Deufemia V., Polese G. (2007) “Visual Language
Implementation Through Standard Compiler-Compiler
Techniques”. Journal of Visual Languages and Computing, 18(2),
pp. 165-226.

[8] Rozenberg G. (Ed.) (1997) “Handbook on Graph Grammars and
Computing by Graph Transformation, Vol.1: Foundations”. World
Scientific.

[9] Engels G., Kreowski H. J., Rozenberg G. (Eds.) (1999) “Handbook
of Graph Grammars and Computing by Graph Transformation, Vol.
2: Applications, Languages, and Tools”. World Scientific.

[10] Ehrig H., Kreowski H. J., Montanari U., Rozenberg G. (Eds.)
(1999) “Handbook of Graph Grammars and Computing by Graph
Transformation, Vol.3: Concurrency, Parallelism, and
Distribution”. World Scientific.

[11] Rekers J., Schürr A. (1997) “Defining and Parsing Visual
Languages with Layered Graph Grammars”. Journal of Visual
Languages and Computing, 8(1), pp. 27–55.

[12] Zhang D., Zhang K., Cao J. (2001) “A Context-Sensitive Graph
Grammar Formalism for the Specification of Visual Languages”.
The Computer Journal, 44(3), pp.187–200.

[13] Nagl M. (1979) “A Tutorial and Bibliographical Survey on Graph
Grammars”. International Workshop on Graph Grammars and
Their Application to Computer Science and Biology, Lecture
Notes in Computer Science, Vol. 73, Springer Verlag, pp. 70–126.

[14] Nagl M. (1987) “Set Theoretic Approaches to Graph Grammars”.
International Workshop on Graph Grammars and Their
Application to Computer Science, Lecture Notes in Computer
Science, Vol. 291, Springer Verlag, pp. 41–54.

[15] Shi Z., Zeng X., Zou Y., et al. (2018) “A Temporal Graph
Grammar Formalism,” Journal of Visual Languages and
Computing, Vol. 47, pp. 62–76.

27

Y. Zou et al. / Journal of Visual Language and Computing (2019) 15-28

DOI reference number: 10.18293/JVLC2019N1-017

[16] Kong J., Zhang K., Zeng X. (2006) “Spatial Graph Grammars for
Graphical User Interfaces”. ACM Transactions on Computer-
Human Interaction, 13(2), pp. 268–307.

[17] Zhao C., Kong J., Zhang K. (2010) “Program Behavior Discovery
and Verification: A Graph Grammar Approach”. IEEE
Transactions on Software Engineering, 36(3), pp. 431–448.

[18] Roudaki A., Kong J., Zhang K. (2016) “Specification and
Discovery of Web Patterns: A Graph Grammar
Approach”. Information Sciences, Vol. 328, 528-545.

[19] Liu Y., Zeng X., Zou Y., Zhang K. (2018) “A Graph Grammar-
Based Approach for Graph Layout,” Software: Practice and
Experience, 49(8), pp. 1523–1535.

[20] Kong J., Barkol O., Bergman R., Pnueli A., Schein S., et al. (2012)
“Web Interface Interpretation Using Graph Grammars”. IEEE
Transactions on System, Man, and Cybernetics – Part C, 42(4), pp.
590–602.

[21] Chen L., Huang L., Chen L. (2015) “Breeze Graph grammar: A
Graph Grammar Approach for Modeling the Software
Architecture of Big Data-Oriented Software Systems”. Software:
Practice and Experience, 45(8), pp. 1023–1050.

[22] Liu Y., Zhang K., Kong J., Zou Y., Zeng X. (2018) “Spatial
Specification and Reasoning Using Grammars: From Theory to

Application,” Spatial Cognition & Computation, Taylor & Francis,
18(4), pp. 315–340.

[23] Pfaltz J. L., Rosefeld A. (1969) “Web Grammars”. International
Joint Conference on Artificial Intelligence, pp. 609–619.

[24] Zeng X., Han X., Zou Y. (2008) “An Edge-Based Context-
Sensitive Graph Grammar Formalism”. Journal of Software, 19(8),
pp. 1893–1901. (in Chinese)

[25] Liu Y., Shi Z., Wang Y. (2018) “An Edge-Based Graph Grammar
Formalism and Its Support System”. International DMS
Conference on Visualization and Visual Languages, pp.101–108.

[26] Zou Y., Zeng X., Han X. (2008) “Context-Attributed Graph
Grammar Framework for Specifying Visual Languages”. Journal
of Southeast University (English Edition), 24(4), pp. 455–461.

[27] Bottoni P., Taentzer G., Schürr A. (2000) “Efficient Parsing of
Visual Languages Based on Critical Pair Analysis and Contextual
Layered Graph Transformation”. IEEE Symposium on Visual
Languages, pp. 59–60.

[28] Zou Y, Lü J, Tao X. (2019) “Research on Context of Implicit
Context-Sensitive Graph Grammars”. Journal of Computer
Languages, Vol. 51, pp. 241–260.

28

J.L. Pérez-Medina et al. / Journal of Visual Language and Computing (2019) 29–41

Journal of Visual Language and Computing
journal homepage: www.ksiresearch.org/jvlc

CROSSIDE: A Design Space for Characterizing Cross-Surface
Collaboration by Sketching
Jorge-Luis Pérez-Medinaa,∗, Jean Vanderdoncktb,∗∗ and Santiago Villarreal-Narvaezb
aIntelligent & Interactive Systems Lab (SI2 Lab), Sede Queri, Av. De los Granados, Universidad de Las Américas (UDLA), Quito 170504, Ecuador
bLouRIM Institute, Place des Doyens, 1, Université catholique de Louvain (UCL), B-1348 Louvain-la-Neuve, Belgium

ART ICLE INFO
Article History:
Submitted 4.8.2019
Revised 4.30.2019
Second Revision 5.20.2019
Accepted 8.15.2019
Keywords:
Design methodology
Displays
Gesture recognition
Graphical User Interfaces
Interactive systems
Pervasive computing
Ubiquitous computing

ABSTRACT
This paper introduces, motivates, defines, and exemplifies CROSSIDE, a design space for representing
capabilities of a software for collaborative sketching in a cross-surface setting, i.e., when stakehold-
ers are interacting with and across multiple interaction surfaces, ranging from low-end devices such
as smartwatches, mobile phones to high-end devices like wall displays. By determining the greatest
common denominator in terms of system properties between forty-one references, the design space
is structured according to seven dimensions: user configurations, surface configurations, input inter-
action techniques, work methods, tangibility, and device configurations. This design space is aimed
at satisfying three virtues: descriptive (i.e., the ability to systematically describe any particular work
in cross-surface interaction by sketching), comparative (i.e., the ability to consistently compare two
or more works belonging to this area), and generative (i.e., the ability to generate new ideas by iden-
tifying potentially interesting, under covered areas). A radar diagram graphically depicts the design
space for these three virtues to enable a visual representation of one or more instances.

© 2019 KSI Research

1. Introduction
In many domains of human activity, across them [1] and

within [2], sketching is largely used as a quick, efficient, and
cost-effective tool for expressing ideas, illustrating design
concepts and solutions as well as for sharing them with di-
verse people [3]. During the early stages [4] of product de-
velopment until its final completion, sketching immediately
plays some role when co-design is a must [5]. Sketching fa-
cilitates the sharing of abstract ideas and the insights inside a
teamwhile offering a common ground for the discussion, es-
pecially when the participants come from different cultural

∗Corresponding author
∗∗Principal corresponding author

jorge.perez.medina@udla.edu.ec (Jorge-Luis Pérez-Medina);
jean.vanderdonckt@uclouvain.be (Jean Vanderdonckt);
santiago.villarreal@uclouvain.be (Santiago Villarreal-Narvaez)

http://investigacion.udla.edu.ec/udla_teams/jorge-perez (
Jorge-Luis Pérez-Medina); https://www.uclouvain.be/jean.vanderdonckt (
Jean Vanderdonckt); https://uclouvain.be/fr/santiago.villarreal (
Santiago Villarreal-Narvaez)

ORCID(s): 0000-0003-4864-0480 (Jorge-Luis Pérez-Medina);
0000-0003-3275-3333 (Jean Vanderdonckt); 0000-0001-7195-1637 (
Santiago Villarreal-Narvaez)

and social backgrounds. Sketching usually uses basic draw-
ings to foster everyone’s participation [6].

Sketching, as one particular form of drawing, belongs to
the first human intellectual skills and abilities that are ac-
quired even before speaking, writing, and precise drawing.
By one year, infants understand that a sequence of sounds
form a word that symbolically represents an action, a rela-
tion, or an object they can point to rather than reaching it.
Our human ability to perceive and to recognize elements in
a graphical representation is in itself a statement of the ex-
pression power yielded by such form of expression.

A sketch, coming from the Greek word �����o� (sche-
dios - done ex tempore), consists in a quick provisional free-
hand drawing executedwithout any constraint in anymedium.
A sketch may convey a message, record or develop an ab-
straction or may be used as a mean for explaining something,
for example an image. A sketch is considered as a very quick
drawing aimed at communicating a message, which can be
understood, misinterpreted, or even ignored. But there is al-
ways a message that is different from the one of a drawing.
For these reasons, within many professions such as indus-
trial and architecture design [5], representing actions, ob-

DOI reference number: 10-18293/JVLC2019-N1-016
29

www.ksiresearch.org/jvlc
http://investigacion.udla.edu.ec/udla_teams/jorge-perez
https://www.uclouvain.be/jean.vanderdonckt
https://uclouvain.be/fr/santiago.villarreal

J.L. Pérez-Medina et al. / Journal of Visual Language and Computing (2019) 29–41

jects, and their relations using different forms of sketches
such as drafts, blueprints, and prototypes, has always been
very important. They make visible the stakeholder’s contri-
bution, which could be different than expected.

The audience of stakeholders involved in sketching ac-
tivities is now wider. Consequently, the pool of software
tools to support collaborative sketching, both commercial
and from the academia, also becomesmore filled. Howmuch
sketching activities could be supported by collaborative tools
is therefore a key question addressed in this paper. Researchers
should be informed about capabilities of existing tools to up-
date their research agenda and to better understand similar-
ities and differences. Practitioners should also be informed
about which tool would match their requirements for con-
ducting collaborative sketching.

The remainder of this paper is structured as follows: Sec-
tion 2 reviews sketching across disciplines involving some
collaboration and discusses selected works; based on this,
Section 3 introduces, motivates, and defines CROSSIDE, a
design space for characterising capabilities of a software for
collaborative sketching; Section 4 exemplifies some instan-
tiations of this design space; Section 5 concludes this paper
by explaining how this design space could be systematically
used to describe, compare, and invent tools for collaborative
sketching on multiple surfaces of interaction.

2. Related Work
In Information andCommunications Technologies (ICT)

as well as in computer and software systems engineering,
a significant amount of resources is devoted to designing a
concept, a service, a solution which could be later on re-
vealed as inadequate. This could happenwhen the functional
requirements are not satisfied, when the user experience is
not met, or when the concept is simply not technologically
feasible or too expensive. When such as mismatch is discov-
ered late in the development life cycle or after the deploy-
ment, adapting what is required to be changed represents a
high cost.

Early sketching in the development life cycle helps creat-
ing alternative solutions and comparing them. It helps to en-
sure that the right approach to design the right solution is put
in place. It keeps the design and development right. With a
sketch, designers and other stakeholders are able to identify
figures, arrows, symbols and other elements that were de-
liberately chosen by a computer actor to communicate with
stakeholders, to illustrate the requirements and share design
ideas. It is more efficient and effective than any textual,
graphical or formal specifications.

By using sketches, designers become more motivated,
more creative, and perhaps more able to address the chal-
lenges of creating a successful design, and thus to produce
a better design outcome [7]. By definition, prototypes are
scaled-down versions of what will be built. Designers use
them because they are faster and cheaper to create than the
final blueprints. Sketching is a quick provisional drawing, it
therefore matches the requirements of prototyping [3].

In Human-Computer Interaction (HCI) design, Collabo-

rative User-Centered Design (CUCD) process suggests us-
ing sketch to understanding and designing all the aspects
of a user interface (UI) design and for getting involved a
wide community of stakeholders, such as, but not limited to:
user researcher, information architect, user interface interac-
tion designers, user testing specialists, software developers,
marketing personnel and software products leaders. Early
sketches inform the development of User interface concep-
tual, interaction style, and even other related material such
training resources, support services, online help, etc. UI us-
ability can be seen as a design problem of “wicked nature”,
as a problem to be solved – the more you try to solve the
problem, the more you discover the complexity of the UI us-
ability andmore you are able to suggest solutions in the early
design phase of the CUCD life cycle. This is because usually
original usability problem has implications/consequences that
cannot be known in advance. Sketches have been shown
very powerful to build a consensus and a trade-off when
usability problems are conflicting with other major quality
factors, such as security. A UI sketch reveals how much a
system could be usable, secure.

Sketching is the practice of drawing a rough outline or
rough draft version of a final piece of art. Sketching is an
aid to thought. Sketches are used as a mean of designing.
Design by sketching has its foundations on the participatory
design approach [8] in which a person not trained, qualified
or experienced is an active and essential participant in the
design process. As a communication tool, sketching can be
used as a way of graphically specifying abstract ideas. It is a
message from the designer to stakeholders. It can be under-
stood by the receiver, misinterpreted, or ignored, but there is
definitely a message. This message must be validated when
there is a consensus to be achieved between the designer and
someone else, for which designers often use limited or scaled
versions of what is being designed.

A common ground to disciplines relying on is that stake-
holders, particularly designers and end-users, whatever their
background and skills in sketching and design are, feel ac-
tively engaged [9]. End-users help in materializing some re-
quirements such as usability [10]. Designers then annotate
original sketches introduce by end-users, add illustrations,
and further develop them. They usually proceed by itera-
tively sketching a concept at different levels of abstraction
[11]. Ambler [12] defines UI Prototyping as an iterative an-
alytical technique in which end users are actively involved,
namely by providing feedback since the early development
stages and continuously afterwards.

Sketching covers many domains of human activity and
inside these domains, there are several works exploiting some
form sketching for one or many sub-activities such as for ex-
ample: problem analysis in general [13], computer science
[2] (e.g., user experience support [14, 15], user interface de-
sign, prototyping, and recognition [16, 17, 18, 19, 20, 21,
22], cross-device UI design [4], user-centered design in agile
projects [23, 24], systemwalkthrough [25]), system develop-
ment (e.g., QUILL [26] for model-based design of web appli-
cations), flexible modelling [27] (e.g., FlexiSketch [28, 29]

30

J.L. Pérez-Medina et al. / Journal of Visual Language and Computing (2019) 29–41

for model sketching), RAPIDO [30] for web API develop-
ment, sketching UML models (e.g., TAHUTI for sketching
UML Class diagrams [31] and SketchML for various UML
diagrams [20]), distributed software design [32, 33], task
modelling [34], notation creation [29]), computer-supported
collaborative work [35] (e.g., stakeholders’ meetings [36],
collocated tables for meetings [37] and interactive design
spaces [38]), product and service design (e.g., sketching in
design [35], extreme designing [39], industrial design [5],
shape-changing products [40]), public displays [41], learn-
ing (e.g., classroom design studio [42], teaching geometry
[43]), ideation [44] and concept generation [7], knowledge
design, capture, and sharing [1], design in any area of engi-
neering [7] (e.g., knot diagramming [45]). From these refer-
ences, we can observe that a significant amount of work has
been devoted to using sketching as a way to support collabo-
ration among stakeholders during the software development
life cycle, starting from requirements engineering to detailed
design. It is particularly useful for those stages involving
some form of graphical representation of artifacts, whether
they are informal (as a screen shot or wireframe) or formal
(e.g., a UML model). Many techniques have been success-
fully reported for expressing sketch grammars [6], with the
need to take into account the context of use (i.e., the user, the
devices/platforms, and the environment) [46] to get context-
aware sketching [43].

3. A Design Space for Cross-Surface
Collaboration by Sketching
Wedetermined the greatest common denominator in terms

of properties between the 41 aforementioned references, in-
dependently of their domain, provided that collaborative sketch-
ing is involved to some extent. This identification resulted
into CROSSIDE, a design space expressing collaborative sketch-
ing according seven dimensions represented clockwise in Fig. 1:
user configurations, surface configurations, input interaction
techniques, workmethods, tangibility, layout, and device con-
figurations. Each dimension is organized according to a pro-
gressive degree of sophistication: each step starts from the
simplest value found in the literature until the most sophis-
ticated degree.

We considered this representation as adequate to satisfy
three virtues that are considered important to characterize
interaction as a model [47]: descriptive (the design space
should be able to describe any work on collaborative sketch-
ing based on these seven dimensions), comparative (the de-
sign space should be able to compare two or more works
on collaborative sketching to identify their similarities and
differences and foster consistency based on the previous de-
scription) and generative (once a comparison is performed,
the design space should be able to identify undercovered ar-
eas and generate new and interesting ideas, configurations).

These seven dimensions are not intended to be completely
independent of each other. Rather, they are aimed at serving
these three virtues. Moreover, a radar chart can be effec-
tively used to graphically represent the values along these

User
Configurations

Device
Configurations

Layout

Tangibility Work
Methods

Input Interaction
Techniques

Surface
Configuratios

Isolated

Individual in
a group

Within groups

Group as a whole

Within an organisation

Among organizations

Between organisations and
their environment

Tiny

Small

Medium

Large desktop

Extra large desktop

Tabletop

Wall screen

Process
Product

Combination
Fixed position

GroupGroup
technology

Virtual
Augmented
virtual

Augmented
real

Real tangibility

Stable physicality

Elastic physicality

Plastic physicalty

Shape-changing

 Hallway

Individual in the office

Meeting

Get together

Ongoing interaction

Follow-up meeting

Document sharing

Mouse
Pen

GloveTangible
device

Finger
Hand

Arms
Full body

Isolated surface

Close intimate

Intimate

Personal

Social

Public

Remote

Figure 1: A design space for Cross-Surface Collaboration by
Sketching.

dimensions by representing them on axes starting from the
same origin. The steps on each dimension are not intended to
be aligned or to be corresponding by concentric level. There-
fore, steps joined on a same circle are not necessarily depen-
dent, they only represent some progression.
3.1. User Configurations

The user configurations provide multiple ways to carry
out a task by different stakeholders. Sincemany people could
be located in different places, possibly at different levels of
various organisations, the design space should consider the
group configuration. Fig. 2a depicts various configurations
among stakeholders involved in a distributed task [9]: indi-
vidual (one task is carried out by one person in a group),
within groups (one task is distributed across persons of a
same group in the organisational structure), group as a whole
(one task is carried out by one group of persons, indepen-
dently of its internal organisation), among groups (one task
is passed from one group to another), within organisation
(one task is distributed across entities of the organisational
structure), among organisations (when one task is distributed
across several different organisations, all having their own
internal structure), and between organisations and their en-
vironment (when tasks are exchanged between organisations
and their common environment). Collaborative sketching
requires stakeholders within groups because sketching tasks
are distributed across people of a same group of the same
organisational structure or not.

Fig. 3 graphically depicts an evolutive scale of the user
configuration for different user configurations with respect
to number of sessions and scenarios: an isolated stakeholder
working alone, an individual stakeholder working as a group
member, a single group of stakeholders, multiple groups of
different stakeholders, multiple groupswithin the same orga-
nization (e.g., a group of representative end-users in a bank
vs a group of interaction designers in the same bank), several

31

J.L. Pérez-Medina et al. / Journal of Visual Language and Computing (2019) 29–41

Isolated

Single User Multiple Users

HallwayIndividual in
the office

Meeting “Get Together” Ongoing Interaction Follow-up
Meeting

Document
Sharing

Single User Multiple Users

Isolated Close
intimated

Intimate Personal Social Public Remote

(0 - 15 cm) (45 cm -1.2 m)(15 - 45 cm) (1.2 – 3.6 m) (3.6 m +)

Single User Multiple Users Multiple Devices

a b

c d

Figure 2: Crosside dimensions: (a) the “user” dimension, (b) the “work method” dimension, (c) the “surface” dimension, and
(d) the “device” dimension.

Figure 3: User configuration with sessions, stakeholders, and
scenarios.

groups across organizations (e.g., an association of interac-
tion designers in a particular domain of human activity) or
the whole world (e.g., a community of practice could be de-
veloped that gathers people involved in a particular family
of designs).
3.2. Surface Configurations

The surface configurations express a hypothetical dis-
tance between a stakeholder working alone andmultiple ones
collaborating in a personal, social, public or remote envi-
ronment, thus touching the notion of territoriality. Fig. 2c
differentiates configurations depending on concentric spa-
tial zones centered around the stakeholder. The distance at
which users feel comfortable interacting with others in table-
top environments depend on age and culture [37]. This study
has contemplated the type of task or activity in which the
users are engaged to influence tabletop design. In a com-
pletely isolated or close intimated space, a user works with
personal interaction surfaces [48].

For example, a collaborative sketching system enables
users testing UI prototypes on any surface size if the user
is completely isolated. When users require a close intimate
space, tiny or small surfaces will be used instead because

they facilitate face-to-face collaboration and eye-contact [5].
Stakeholders who are not designers or developers usually
come to meetings with their own interaction surface (e.g.,
a smartphone, a tablet) and would like to see the UI pro-
totype on their very right devices, even if they drew some-
thing on another, possibly larger, surface. Personal spaces
offer more ample possibilities than intimate spaces because
users sitting around a table or standing side-by-side can share
work-spaces by using multiple displays, large, or extra large
desktops, tabletops, and wall screens. The social space takes
place in a business-based interaction. Stakeholders and final
users could interacting in shared work-spaces by using large
tabletop display or wall screens.

For example, a social space is adopted when some kind
of multiple user’s interactions in taking place in a space be-
tween 1.2–3.6 m. Public space allows the user to interact
with a sizable audience. In this context, the users make use
of multiple display. Small surfaces allow manipulation of
the work-space, while large surfaces serve to display the in-
formation to the entire audience. Informational wall sur-
faces, like public displays [41], provide shared views to the
users standing far away from the display. Interactive walls
enable users to walk up to the display and interleave interac-
tion and discussion among participants. Finally, in remote
spaces, users share work-spaces with same or different times.
A collaborative sketching system could offer most surface
configurations. Stakeholders interact simultaneously with
any device. In a collaborative session, users can sketch scenes
in a private way or separated into small groups, perform a
task privately and then communicate the results to all stake-
holders [11]. They can interact using integrated environ-
ments composed of horizontal or vertical displays regardless
of the dimensions of these devices.
3.3. Input Interaction Techniques

The input interaction techniques express the sophistica-
tion degree with which sketching is supported, ranging from
an indirect manipulation to full direct manipulation. This
dimension takes into account the use of materials and the
naturalness of the interaction. A classical indirect pointing
device is the “mouse” because its locus of control (i.e., the

32

J.L. Pérez-Medina et al. / Journal of Visual Language and Computing (2019) 29–41

physical space in which actions occur) is different from or
outside the locus of application (i.e., where the actions are
applied). “Pen-based” interaction enables the user to inter-
act with the device by using a passive or active stylus rather
than a mouse. While pen devices initially supported indirect
manipulation, they now support direct manipulation, namely
by touch technology, regardless the fingers or the pointers in-
volved. The “glove” considers the family of lightweight and
stretchable devices that combines hand posture sensing and
tactile pressure. Manipulation is direct, by device interme-
diation, like with smartwatches, armbands, and rings. “Tan-
gible” devices naturally offer direct manipulation by con-
necting objects and surfaces to digital information. Tangi-
ble UIs typically work on tabletop surface and embed the
tracking mechanism inside or outside the surface [49]. The
“finger” considers situations where the end user interacts di-
rectly with the surface by finger tracking. This dimension
could be extended to using the whole hand, but requires tech-
nologies for hand pose recognition. The last step, i.e. “full
body”, involves full-body gesture recognition, but its bene-
fits for sketching are yet to be demonstrated.
3.4. Work Methods

The work methods characterise how interaction surfaces
are spatially arranged according to a territoriality in the en-
vironment and how these environments are connected to-
gether (e.g., through Wi-Fi, LAN, WAN). Interaction sur-
faces could be tiled, coupled, uncoupled, or positioned side-
by-side [48]. This dimension subsumes the physical location
of each surface and how it is positioned (i.e., vertically, hor-
izontally, in an oblique way). The dimension also considers
the devices configurations of the five categories of technolo-
gies for collocated collaborative work classified by Wang et
al. [5] namely: horizontal displays, large vertical displays,
multiple displays, tangible interfaces, and integrated envi-
ronments. Fig. 2b depicts typical setups of single and multi-
ple users. Users can work alone in their own organisations.
Multiple users work in corporate environments [9]: hallway
(when an environment consists of any informal place where
users could meet), individual in the office (when an envi-
ronment only accommodates one user at a time, although
this user can change over time), meeting (when the environ-
ment accommodates several users at a time for conducting
a meeting), get together (when the environment accommo-
dates several users for collaboration in general), ongoing in-
teraction (when different environments involve many differ-
ent users).
3.5. Tangibility

The tangibility dimension expresses to what extent the
materialization of collaboration space is digital, physical, or
mixed, ranging from applications in digital environments to
the use of shape-changing devices. Digital environments de-
fine most classical applications where UI can be 1D (based
on lines), 2D (based on surfaces), 2D1/2 (based on a space
projected onto a surface) or 3D (in space). 1D UIs are typ-
ically based on command lines or instructions. In digital

environments, users interact with a minimal immersion de-
gree. Information is presented as a stream of characters in
a text terminal. 2D UIs are incorporated in an environment
based on conventional bi-dimensional representations where
the interaction techniques are supported by events. Their
widgets and their composition enable creating complex in-
terfaces. The 2D1/2 and 3D interfaces extend classic GUIs
with the notion of overlap and depth perceptions.

Virtual describes real environments simulated by a com-
puter where users are involved with a high immersion de-
gree. Users interact with virtual objects in an infinite 3D
space. On the opposite of the dimension, applications are
developed in real environments and use of mechanisms to
increase the perception of the user. Augmented Virtual are
applications including virtual worlds generated by a com-
puter. These applications incorporate virtual reality to re-
place the physical world and the virtual world predominates
over the real. Augmented Virtual extends the physical real-
ity perceived by incorporating virtual objects into the phys-
ical world, thus increasing the degree of immersion. In con-
trast, Augmented Real considers an otherwise real environ-
ment augmented by means of virtual objects [50]. In the
Augmented Real, virtual objects increase the real world, the
dominant medium.

Tangible UIs give physical form to digital information,
employing physical artifacts both as representations and con-
trols for computational media [51]. This is further refined
into four steps depending how tangible objects are material-
ized: real tangibility, stable physicality, elastic physicality,
and plastic physicality. Real tangibility attempts the repro-
duce the physical behavior of a real world object into the
tangible object, or a sub-set of it. Stable physicality occurs
when tangible objects never change their behavior, whether
the are expected to mimic some real work or not. Elas-
tic physicality groups all environments that use both phys-
ical materials with computational analysis and simulation.
These environments are used to understand and represent
the world. Plastic physicality occurs in the area of shape-
changing UI, where the devices are artifacts whose surface
and/or volume can be articulated and modulated with their
spatial domain [40]. In physics and materials science, the
physicality property is one form of adaptation, which could
be decomposed into threemajor properties: plasticity, which
describes the deformation of a material undergoing (non-
reversible) changes of shape in response to applied forces;
elasticity, which is the tendency of solid materials to return
to their original shape after being deformed; and viscosity,
which expresses to what extent a material is resistant with re-
spect to deformation. Solid objects will deform when forces
are applied on them ; if the object is elastic, it will return
to its initial shape and size when these forces are released.
These two terms can be used for tangibility.
3.6. Layout

The Layout dimension refers to the facility layout con-
cept [52] borrowed from Production and Operations Man-
agement aimed at optimizing the physical arrangement of

33

J.L. Pérez-Medina et al. / Journal of Visual Language and Computing (2019) 29–41

resources (e.g., a machine, a device, an operator) to maxi-
mize the quality and the quantity of the output, while mini-
mizing the cost of involved resources. The different types of
layout are [52, 53]:

• Process layout, when all resources performing simi-
lar type of operations are grouped at one location ac-
cording to their functions. In our case, this means
that all human, software and hardware resources re-
quired for each phase are gathered in the same place
to support the collaboration, such as all resources for
design in one place while development occurs in an-
other place. The flow paths of information from one
functional area to another vary from product to prod-
uct. Usually the paths are long with backtracking pos-
sible.

• Product layout, when all resources are located accord-
ing to the processing sequence of the product. In our
case, resources are gathered in one location at a time
depending on the phase and the locations are arranged
in a sequence that follows the product life cycle, such
as requirement, early analysis and design, advanced
design, development, deployment, evaluation.

• Combination layout, when input to be processed come
in different types and sizes. The combination layout
is process layout where resources are arranged in a
sequence to produce various types and sizes of prod-
ucts. The sequence of phases remains the same for the
products having different types (e.g., only designing a
concept vs sketching and designing) and sizes (e.g.,
sketching the home page of a web site or sketching
the whole web site).

• Fixed position layout, when major physical resources
remain in a fixed location (e.g., devices and platforms
for sketching) and human resources are sent to this lo-
cation depending on the phase. For example, a table-
top setup for collaborative sketching is heavy to move
from one location to another and complex to re-calibrate,
therefore stakeholders are brought to this location to
ensure the phase. On the other hand, a small mobile
sketching station could move from one location to an-
other.

• Group layout, when product and process layout are
combined in a particular layout called cell that satisfy
a predefined set of requirements.

• Group Technology layout, when a group layout emerges
from so-calledGroup Technology [53], which is aimed
at analysing and comparing items to group them into
families with similar characteristics. Families of in-
puts sharing similar requirements are grouped into cells,
each cell being capable of satisfying all the require-
ments assigned to it. For example, phases sharing sim-
ilar user requirements, even from different projects,
will be conducted in the same place with the same re-
sources.

Single device Multiple devices

Si
ng

le
 u

se
r

M
ul

tip
le

 u
se

r

Sketch and test on the same device Sketch on one device, test on another

All sketch and test on a shared device All sketch and test on different devices

SUSD SUMD

MUSD MUMD

Figure 4: Quadrant of the four configurations.

Figure 5: Example of a SUSD configuration: one user with
one device among several.

3.7. Device Configurations
The device configurations refer to the surface size of de-

vice independently of their density and orientation. Fig. 2d
depicts the different dimensions for the device configura-
tions. The sizes are categorized by generalised dimensions
ranging from tiny to wall screen. A system could run on a va-
riety of devices offering different sizes, performing scaling
and resizing to accommodate variations induced by different
screens. Four typical configurations based on stakeholders
(or users) and their surfaces therefore emerge (Fig. 4):

1. Single user-Single device (SUSD): a single stakeholder,
such as an end-user, is working in isolation on one de-
vice only to sketch a UI (see figure 4 - top left). This
device could be the very right device on which the fi-
nal UI should run or another one. Therefore, this con-
figuration is appropriate for conducting the sketching,
prototyping, and testing activities as defined.

2. Single user-Multiple devices (SUMD): a single stake-
holder is sketching on multiple devices either simul-
taneously or asynchronously in order to assemble the
various sketches into a coherent design scenario (see
figure 4 - top right). Therefore, this configuration is
appropriate for conducting the sketching, prototyping,
and sharing/testing activities.

34

J.L. Pérez-Medina et al. / Journal of Visual Language and Computing (2019) 29–41

Figure 6: Example of a SUMD configuration: one user sketch-
ing on one device (a tablet) and testing on another (a wall
screen).

3. Multiple user-Single Device (MUSD): several stake-
holders share a same device in order to interact to-
gether and to come up with an agreement on some
design questions (see figure 4 - bottom left). This con-
figuration is expected to mimic the classical white-
board configuration where different stakeholders are
together in front of a whiteboard and sketching things
all together. Therefore, this configuration is appropri-
ate for supporting the sharing/testing and discussing/reflecting
activities, while it could be also used for the sketching
and prototyping activities, but not primarily.

4. Multiple users-Multiple devices (MUMD): several stake-
holders exploit private and public devices to apply any
decided modification on the design scenario (see fig-
ure 4 - bottom right). They could perform these ac-
tions first on their own private device (e.g., their tablet),
and then propagate modifications to the whole sce-
nario (displayed on a wall screen). They straightfor-
wardly interact on the public device to collect immedi-
ate feedback from other stakeholders. Therefore, this
configuration is appropriate for supporting the shar-
ing/testing and discussing/reflecting activities.

3.8. Building process of the Design Space
The design space has been built by identifying the great-

est common denominator of software features described from
forty-one references in various domains. The process fol-
lowed to build the design space was basically a middle-out
approach that combines two sub-processes, while trying to
satisfy the principle of separation of concerns regarding the
three main aspects of a context of use (e.g., users and their
interactive tasks, their platforms and devices, their physical
and organisational environments [46]):

1. A bottom-up approach consisting of browsing each
reference at a time, identifying any high-level factor
supporting collaborative sketching by separating them
for users, platforms, and environments. All values
found for each factor were collected in the same set.

User
Configurations

Device
Configurations

Layout

Tangibility Work
Methods

Input Interaction
Techniques

Surface
Configuratios

Isolated

Individual in
a group

Within groups

Group as a whole

Within an organisation

Among organizations

Between organisations and
their environment

GAMBIT

Tiny

Small

Medium

Large desktop

Extra large desktop

Tabletop

Wall screen

Process
Product

Combination
Fixed position

GroupGroup
technology

Virtual
Augmented
virtual

Augmented
real

Real tangibility

Stable physicality

Elastic physicality

Plastic physicalty

Shape-changing

 Hallway

Individual in the office

Meeting

Get together

Ongoing interaction

Follow-up meeting

Document sharing

Mouse
Pen

GloveTangible
device

Finger
Hand

Arms
Full body

Isolated surface

Close intimate

Intimate

Personal

Social

Public

Remote

Figure 7: Crosside instantiation for Gambit.

2. A top-down approach consisting of determining such
high-level factors by looking after a theoretical defini-
tion in the literature.

For example, the “User configurations” factor was iden-
tified among several references, therefore encouraging us to
find a taxonomy that is relevant enough to express values
found for this factor. We discovered a similar concept in
Mandviwalla and Olfman [54]. To make it suitable for our
purpose, we expanded the possible values from values col-
lected in the references andwe adapted the definition accord-
ingly to make it categorical. Fig. 2a graphically represents
the resulting factor presented as a progressive dimension.

Another example is related to the “Surface configura-
tions” factor. By extracting from each use case found in ev-
ery reference, we wanted to categorise the surface projected
on the ground that delineates the interaction space. When
only one person is involved in a sketching, there are vari-
ous comfort zones from social psychology. When several
persons are involved in a collaborative sketching, the way
they interact with their system depends on what they want
to do with their sketch. The sketching activity itself is more
frequently found in small surfaces, while sharing and dis-
cussing the sketching is more frequently found in medium
to large surfaces. The scope of the input and the output de-
termines the surface.

4. Instantiation of the Design Space
This section first instantiates CROSSIDE on GAMBIT, one

of our systems for collaborative sketching, to check how the
descriptive virtue is addressed. It then performs the instanti-
ations for the external tools: BELONGINGS [55], SKETCHML
[20], FLEXISKETCH [28, 29, 56], CALICO [57] and EVE
[22]. For the instantiations of each of the tools, we super-
impose the first drawing to address the comparative virtue.

35

J.L. Pérez-Medina et al. / Journal of Visual Language and Computing (2019) 29–41

At the end, all instances are presented in the same design
space allowing to see their similarities and differences.
4.1. The CROSSIDE instantiation for GAMBIT

GAMBIT1 (Gatherings And Meetings with Beamers and
Interactive Tables) [11] is a freely accessible2multi-platform
HTML5 environment for collaborative design by sketching
for UI design, but not only, by supporting (Fig. 7):

• Multi-fidelity: it should enable stakeholders to provide
material at any level of fidelity and to easily switch
from one level of fidelity to another.

• Multi-format: while sketching remains at the heart of
the service, it should accommodate various formats of
data both as input and as output.

• Multi-session: it should offer the possibility to create,
edit, one or many sessions simultaneously.

• Multi-scenario: within a single session, it should be
able tomanage several alternate scenarios at once, namely
by representing explicitly the different scenarios and
by linking them. For instance fork and join mech-
anisms could be used to map scenarios together and
create different design paths for idea writing. Differ-
ent stakeholders make explicit more design ideas so as
to generate new design paths that were remained under
explored before. This is very important to avoid the
“Do not fall in love of your own design” observation:
once a design alternative is selected as an official one,
some stakeholders tend to keep it (they fall in love of
their design) and to spend remaining time in refining
this design as opposed to exploring alternate designs.

• Multi-stakeholder: a same session could be created to
involve awide community of stakeholders whose roles
and responsibilities may evolve over time. When the
role or the responsibility of a stakeholder changes de-
pending on the context of the problem, the tool should
accommodate these changes flexibly.

• Multi-access: each stakeholder should contribute to
a design session with her own devices. End-users as
well as designers tend to create smaller sketches on
small screen devices and larger sketches when the in-
teraction surface increases, without necessarily adding
more details. Multi-device is equally important to sup-
port cross-device interaction, e.g., when a stakeholder
may switch from one device to another while partici-
pating in the same session, but with different roles.

1The word “gambit” is used in chess in reference to a movement in
which the player sacrifices a piece, usually a pawn, in exchange to some
future advantage; in user interface design the gambit would be made by the
designer who sacrifices sketches in exchange to know in advance how the
interface would function in the hands of the end-users, allowing her to learn
from the eventual observation of this usage.

2Accessible at http://gambitsketch.appspot.com/

User
Configurations

Device
Configurations

Layout

Tangibility Work
Methods

Input Interaction
Techniques

Surface
Configuratios

Isolated

Individual in
a group

Within groups

Group as a whole

Within an organisation

Among organizations

Between organisations and
their environment

GAMBIT Belongings

Tiny

Small

Medium

Large desktop

Extra large desktop

Tabletop

Wall screen

Process
Product

Combination
Fixed position

GroupGroup
technology

Virtual
Augmented
virtual

Augmented
real

Real tangibility

Stable physicality

Elastic physicality

Plastic physicalty

Shape-changing

 Hallway

Individual in the office

Meeting

Get together

Ongoing interaction

Follow-up meeting

Document sharing

Mouse
Pen

GloveTangible
device

Finger
Hand

Arms
Full body

Isolated surface

Close intimate

Intimate

Personal

Social

Public

Remote

Figure 8: Crosside instantiation for Belongings superim-
posed to the instantiation for Gambit.

4.2. The CROSSIDE instantiation for BELONGINGS
BELONGINGS [55] consists of an interactive tangible table-

top surrounded by multiple interactive surfaces and smaller
devices for collaborative query by sketching. The table was
installed in a museum and designed to communicate indige-
nous traditional knowledge and cultural values. Fig. 8 de-
picts the design space instantiated for this environment su-
perimposed on the previous one (Fig. 7) to compare the cov-
erage of both tools. BELONGINGS can be operated in a fixed
tabletop by two users working together in a social context.
Unlike GAMBIT, BELONGINGS supports the use of tangible
devices, thus being better with that respect on the dimension.
Both software share a participatory design [8] approach as
part of the development process: designers and final users
work together to produce the final application.
4.3. The CROSSIDE instantiation for

FLEXISKETCH
FLEXISKETCH [28, 29, 56] comes in two versions: the

first uses tablets as sketching media and supports inexpen-
sive, mobile sketching at any time and in any place, while
the second version, known as “FlexiSketch Desktop”, runs
on electronicwhiteboards and provides awide screen for col-
located meetings. Multiple tablets can be connected to the
desktop version over Wi-Fi, thus enabling end users to col-
laborate and simultaneously work in the same workspace re-
gardless the multiple screens they are using. FLEXISKETCH
enables participants to edit the workspace simultaneously,
offers shared and private views, and allows groupwork and/or
facilitating individual work. Fig. 9 depicts how FlexiSketch
is instantied on the design space. As a way for comparison,
the instantiation ofGambit is also superimposed. FlexiSketch
and Gambit have the similarities of considering the partici-
patory design as part of the development process. Both tools

36

http://gambitsketch.appspot.com/

J.L. Pérez-Medina et al. / Journal of Visual Language and Computing (2019) 29–41

User
Configurations

Device
Configurations

Layout

Tangibility Work
Methods

Input Interaction
Techniques

Surface
Configuratios

Isolated

Individual in
a group

Within groups

Group as a whole

Within an organisation

Among organizations

Between organisations and
their environment

GAMBIT FlexiSketch

Tiny

Small

Medium

Large desktop

Extra large desktop

Tabletop

Wall screen

Process
Product

Combination
Fixed position

GroupGroup
technology

Virtual
Augmented
virtual

Augmented
real

Real tangibility

Stable physicality

Elastic physicality

Plastic physicalty

Shape-changing

 Hallway

Individual in the office

Meeting

Get together

Ongoing interaction

Follow-up meeting

Document sharing

Mouse
Pen

GloveTangible
device

Finger
Hand

Arms
Full body

Isolated surface

Close intimate

Intimate

Personal

Social

Public

Remote

Figure 9: Crosside instantiation for FlexiSketch on Gam-
bit.

allow multiple concurrent accesses through the simultane-
ous use of multiple devices.
4.4. The CROSSIDE instantiation for CALICO

CALICO [57] is a free hand rapid design tool supporting
early software design activities to be used with touch screen
interfaces, such as interactive whiteboards and tablet PCs.
CALICO enables designers creating designs on multiple can-
vases based on a client-server architecture, supporting up
to 20 simultaneously active users [58]. A CALICO client
is portable, supporting computers connected to electronic
whiteboards, laptops, and tablets. Thus, CALICO supports
collaborative work across multiple devices, allowing multi-
ple designers to work synchronously on the same canvas or
asynchronously on different canvases. This allows designers
working in a group to branch off to their own canvas. Fig. 10
combines the instantiations of CALICO and GAMBIT.
4.5. The CROSSIDE instantiation for SKETCHML

SKETCHML [20] is a framework that offers the ability
to define and recognize every kind of 2D graphical library,
by using freehand drawing, to be used in the construction
of user interfaces. The framework uses an empirical lan-
guage based onXML. It language allows the compatibility of
SketchMLwith other applications and services through vari-
ous devices. Fig. 11 combines the instantiations of SKETCHML
and GAMBIT.
4.6. The CROSSIDE instantiation for EVE

EVE [22] is a Sketch-based prototyping workbench that
facilitates end-users to define their design through a set of
low-fidelity sketches. The Low-fidelity representations are
recognized and translated inmediumfidelity representations,
as well as in high fidelity prototypes. End-users realize the
representations in a canvas of two dimensions. End-users

User
Configurations

Device
Configurations

Layout

Tangibility Work
Methods

Input Interaction
Techniques

Surface
Configuratios

Isolated

Individual in
a group

Within groups

Group as a whole

Within an organisation

Among organizations

Between organisations and
their environment

GAMBIT Calico

Tiny

Small

Medium

Large desktop

Extra large desktop

Tabletop

Wall screen

Process
Product

Combination
Fixed position

GroupGroup
technology

Virtual
Augmented
virtual

Augmented
real

Real tangibility

Stable physicality

Elastic physicality

Plastic physicalty

Shape-changing

 Hallway

Individual in the office

Meeting

Get together

Ongoing interaction

Follow-up meeting

Document sharing

Mouse
Pen

GloveTangible
device

Finger
Hand

Arms
Full body

Isolated surface

Close intimate

Intimate

Personal

Social

Public

Remote

Figure 10: Crosside instantiation for Calico superimposed
to the instantiation for Gambit.

User
Configurations

Device
Configurations

Layout

Tangibility Work
Methods

Input Interaction
Techniques

Surface
Configuratios

Isolated

Individual in
a group

Within groups

Group as a whole

Within an organisation

Among organizations

Between organisations and
their environment

GAMBIT SketchML

Tiny

Small

Medium

Large desktop

Extra large desktop

Tabletop

Wall screen

Process
Product

Combination
Fixed position

GroupGroup
technology

Virtual
Augmented
virtual

Augmented
real

Real tangibility

Stable physicality

Elastic physicality

Plastic physicalty

Shape-changing

 Hallway

Individual in the office

Meeting

Get together

Ongoing interaction

Follow-up meeting

Document sharing

Mouse
Pen

GloveTangible
device

Finger
Hand

Arms
Full body

Isolated surface

Close intimate

Intimate

Personal

Social

Public

Remote

Figure 11: Crosside instantiation for SketchML superim-
posed to the instantiation for Gambit.

can navigate through the three levels of loyalty. At each level
it is possible to make the desired changes. For each of the fi-
delity, end-users can operate three modes. The design func-
tionality, the configuration of the interaction and the preview
of the prototype. Fig. 13 combines the instantiations of EVE
and GAMBIT.
4.7. The comparative virtue of CROSSIDE

Fig. 14 combines all the instantiations of tools studied
insofar in a radar diagram to facilitate the visual compari-
son of the tools (provided that they are not too numerous),
such as the similarities and differences. The goal is to satisfy

37

J.L. Pérez-Medina et al. / Journal of Visual Language and Computing (2019) 29–41

Figure 12: Meeting work method for Gambit.

User
Configurations

Device
Configurations

Layout

Tangibility Work
Methods

Input Interaction
Techniques

Surface
Configuratios

Isolated

Individual in
a group

Within groups

Group as a whole

Within an organisation

Among organizations

Between organisations and
their environment

GAMBIT EVE

Tiny

Small

Medium

Large desktop

Extra large desktop

Tabletop

Wall screen

Process
Product

Combination
Fixed position

GroupGroup
technology

Virtual
Augmented
virtual

Augmented
real

Real tangibility

Stable physicality

Elastic physicality

Plastic physicalty

Shape-changing

 Hallway

Individual in the office

Meeting

Get together

Ongoing interaction

Follow-up meeting

Document sharing

Mouse
Pen

GloveTangible
device

Finger
Hand

Arms
Full body

Isolated surface

Close intimate

Intimate

Personal

Social

Public

Remote

Figure 13: Crosside instantiation for EVE superimposed to
the instantiation for Gambit.

the comparative virtue of the design space, not to promote
an ideal tool being the best along all dimensions. Rather,
some tools are more advanced along some dimensions, say
the “Device configurations”, while others are targeting more
flexibility for other dimensions, like “User configurations”.
For example, the range of “Device configurations” is well
covered by both GAMBIT and CALICO, up to the three first
steps of “Work methods”. Fig. 12 illustrates the “Meeting”
workmethod, where two designers share a tabletop for sketch-
ing a prototype by pen that is rendered in real-time on the
smartphone of an end-user. Sketching is in direct manipu-
lation: the designer is sketching directly on the tabletop and
manipulating the sketch in the same way.
4.8. The generative virtue of CROSSIDE

A close examination of Fig. 14 leads to the observation
that some dimensions are pretty well covered, like “Device
configurations” and “Surface configurations”, some others
are moderately covered like “Layout”, “Work methods”, and
“Input interaction techniques” while the remaining ones are

limited, such as “User configurations” and “Tangibility”. This
suggests that these dimensions are welcome to be explored
in further activities of a research agenda.

Regarding the “User configurations” dimension, we ob-
serve that the maximum step is “Within groups” because ex-
isting software do support multiple users (as represented in
Fig. 4), but do not explicitly record and maintain the organ-
isational structure among stakeholders. Their roles remain
undifferentiated and the organisation structure is absent. A
possible extension along this dimension would incorporate
the explicit definition of such a structure, along with the
roles played by stakeholders, especially in teams distributed
in time and space. In this way, various types of organiza-
tions could be included, such as design teams, development
companies like off-shore companies.

Regarding the “Device configurations” dimension, we
observe that this dimension is the best one covered in the de-
sign space since the ultimate step is reached. Indeed, most
software accommodate various types of devices and plat-
forms, usually in a multi-platform or cross-device fashion.

Regarding the “Input Interaction techniques” dimension,
themaximum step reaches finger-based interactionwhen draw-
ing or sketching is conducted based on the physical move-
ments of fingers, usually represented as uni- or multi-stroke
gestures, thus limiting the interaction to 2D. 3D interaction
is not really exploited, unless it is for the purpose of 3D ob-
jects. One could imagine for instance full-body gesture in-
teraction to enable stakeholders to arrange pages of a web
site dynamically in front of a wall-screen instead of moving
them by point and click.

Regarding the “Work methods” dimension, the typical
method observe seems to be “Ongoing interaction”, which
means that interaction capabilities remain opportunistic and
constant whatever the phase is and whoever the stakeholders
are. Some software support design history with do, undo,
redo (e.g., by replaying the sketching actions), but this ac-
tivity is not synchronized with a software management tool
or with a document sharing system to store the current sta-
tus of a design. However, most software includes a facility
to export its contents to be integrated in the software docu-
mentation.

Regarding the “Tangibility” dimension, we notice that
this is the most limited dimension in all tools examined so
far: most of them represent digital solutions where sketch-
ing is achieved on a 2D surface with limited beautification
performed in this space. There are probably other tools for
collaborative sketching in 3D exhibiting the capability to vir-
tually augment the real world, but they do not belong to our
initial list of references. For the practitioners, this means that
no tool is available today to fulfill these needs. The design of
interest remains also only digital. Although some software
exist that address the needs of physical-digital interfaces or
objects, such as so-called phygital objects, they are not inte-
grated with collaborative design tools.

Regarding the “Layout” dimension, it is difficult to as-
sess this dimension since the physical setup and arrangement
of interaction surfaces and their users is not explicitly repre-

38

J.L. Pérez-Medina et al. / Journal of Visual Language and Computing (2019) 29–41

sented, as in a design topology. Most interaction surfaces
are mobile or partially mobile, thus enabling them to be re-
arranged depending on the requirements of the phase. But
there is no explicit mechanism to represent the requirements
of a design that would be turned automatically into a physi-
cal configuration to support it. Instead, stakeholders change
the layout themselves depending on the constraints they per-
ceive, apart from fixed or heavy interaction surfaces that are
only found in dedicated locations. An interesting extension
her would be to explicitly consider the notion of territoriality
[59] to express the public, private, and common spaces for
collaborative actions that would be then transformed into an
adaptable layout of interaction surfaces.

Regarding the “Device configurations” dimension, the
covered part shows again that a wide range of device is typ-
ically supported, ranging from small to very large devices.
This is especially the case when such devices benefit from a
HTML5-compliant browser that enables them to communi-
cate easily.

The design space obtained so far only reflects some sig-
nificant dimensions identified among a set of forty-one ref-
erences considered as representative instances of collabora-
tive sketching in various domains of human activity, ranging
from learning to industrial design. While this set of refer-
ences covers several domains, we do not argue that its cov-
erage is complete or representative enough of the vast ma-
jority of tools of interest. Therefore, our next step consists
of conducting a Systematic Literature Review (SLR) [60] for
identifying references relevant to collaborative sketching for
multiple purposes:

1. To expand the coverage of reviewed works from our
41 selected references to a larger panel.

2. To address the reproductibility of the procedure for
guaranteeing the coverage of the design space.

3. To address explicitly the generative virtue by discussing
themost promising configurations on this design space
which may serve for a research agenda in the near fu-
ture.

For the moment, we can superimpose the instantiations
of the design space performed for the 41 references. On one
hand, this superimposition enables us to identify portions of
each dimension that are more or less frequently covered, or
not covered at all. But this analysis considers only one di-
mension at a time, which may be considered as reductive.
On the other hand, the superimposition also enables us to
identify the configurations that are the most or the least fre-
quently adopted by tools. This does not mean that they are
appropriate or not, but simply the coverage could be dis-
cussed. We prefer to perform this analysis on a set of ref-
erences resulting from the SLR instead of our initial set.

5. Conclusion and Future Work
We presented CROSSIDE, a design space for represent-

ing capabilities of a software for collaborative sketching in
a cross-surface setting. This design space consists of seven

User
Configurations

Device
Configurations

Layout

Tangibility Work
Methods

Input Interaction
Techniques

Surface
Configuratios

Isolated

Individual in
a group

Within groups

Group as a whole

Within an organisation

Among organizations

Between organisations and
their environment

GAMBIT Belongings FlexiSketch Calico SketchML EVE

Tiny

Small

Medium

Large desktop

Extra large desktop

Tabletop

Wall screen

Process
Product

Combination
Fixed position

GroupGroup
technology

Virtual
Augmented
virtual

Augmented
real

Real tangibility

Stable physicality

Elastic physicality

Plastic physicalty

Shape-changing

 Hallway

Individual in the office

Meeting

Get together

Ongoing interaction

Follow-up meeting

Document sharing

Mouse
Pen

GloveTangible
device

Finger
Hand

Arms
Full body

Isolated surface

Close intimate

Intimate

Personal

Social

Public

Remote

Figure 14: Crosside instantiations for Belongings,
FlexiSketch, Calico, SketchML, EVE and Gambit all
combined at once.

dimensions (i.e., user configurations, surface configurations,
input interaction techniques, work methods, tangibility, lay-
out, and device configurations) resulting from a compara-
tive analysis of 41 references in the domain. Each instantia-
tion of these 41 references on the design space is graphically
depicted as a radar diagram, which visually supports three
virtues: descriptive, comparative, and generative.

Acknowledgments
The authors thank the anonymous reviewers for their con-

structive and patient comments on earlier versions of this
manuscript.

References
[1] S. McCrickard, Making Claims: The Claim as a Knowledge

Design, Capture, and Sharing Tool in HCI, Morgan &
Claypool, June 2012. URL: https://www.morganclaypool.
com/doi/abs/10.2200/S00423ED1V01Y201205HCI015.
doi:10.2200/S00423ED1V01Y201205HCI015, Synthesis Lectures on
Human-Centered Informatics.

[2] C. Gonzalez-Perez, Filling the Voids - FromRequirements to Deploy-
ment with OPEN/Metis, in: Proc. of the Fifth Int. Conf. on Software
and Data Technologies, Volume 1, ICSOFT’ 10, SciTePress, 2010.

[3] R. van der Lugt, Functions of sketching in design idea generation
meetings, in: Proc. of the 4th Conf. on Creativity & Cognition, C&C
’02, ACM, New York, USA, 2002, pp. 72–79. URL: http://doi.acm.
org/10.1145/581710.581723. doi:10.1145/581710.581723.

[4] J. Lin, J. A. Landay, Employing patterns and layers for early-stage
design and prototyping of cross-device user interfaces, in: Proc. of
the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’08, ACM, New York, NY, USA, 2008, pp. 1313–1322. doi:10.
1145/1357054.1357260.

[5] H. Wang, E. Blevis, Concepts that support collocated collaborative
work inspired by the specific context of industrial designers, in: Proc.
of the ACMConf. on Computer Supported CooperativeWork, CSCW

39

https://www.morganclaypool.com/ doi/ abs/ 10.2200/ S00423ED1V01Y201205 HCI015
https://www.morganclaypool.com/ doi/ abs/ 10.2200/ S00423ED1V01Y201205 HCI015
http://dx.doi.org/10.2200/S00423ED1V01Y201205HCI015
http://doi.acm.org/10.1145/581710.581723
http://doi.acm.org/10.1145/581710.581723
http://dx.doi.org/10.1145/581710.581723
http://dx.doi.org/10.1145/1357054.1357260
http://dx.doi.org/10.1145/1357054.1357260

J.L. Pérez-Medina et al. / Journal of Visual Language and Computing (2019) 29–41

’04, ACM, NewYork, USA, 2004, pp. 546–549. URL: http://doi.acm.
org/10.1145/1031607.1031698. doi:10.1145/1031607.1031698.

[6] G. Costagliola, V. Deufemia, M. Risi, Sketch Grammars: A For-
malism for Describing and Recognizing Diagrammatic Sketch Lan-
guages, in: Proc. of Eighth Int. Conf. on Document Analysis and
Recognition, 29 August - 1 September 2005, ICDAR’ 05, 2005, pp.
1226–1231. URL: https://doi.org/10.1109/ICDAR.2005.218. doi:10.
1109/ICDAR.2005.218.

[7] M. C. Yang, Observations on concept generation and sketching in
engineering design, Research in Engineering Design 20 (2009) 1–11.

[8] M. J. Muller, S. Kuhn, Participatory Design, Communications of the
ACM 36 (1993) 24–28.

[9] E. Berglund, M. Bång, Requirements for distributed user interface
in ubiquitous computing networks, in: Proc. of Conf. on Mobile and
Ubiquitous MultiMedia, MUM ’02, ACM Press, New York, USA,
2002.

[10] J. Vanderdonckt, A. Beirekdar, Automated web evaluation by guide-
line review, J. Web Eng. 4 (2005) 102–117.

[11] U. B. Sangiorgi, F. Beuvens, J. Vanderdonckt, User interface de-
sign by collaborative sketching, in: Proc. of the ACM Int. Conf.
on Designing Interactive Systems, DIS ’12, ACM, New York, NY,
USA, 2012, pp. 378–387. URL: http://doi.acm.org/10.1145/2317956.
2318013. doi:10.1145/2317956.2318013.

[12] S. W. Ambler, 2007, Agile adoption rate survey results: March 2007,
URL: http://www.ambysoft.com/surveys/agileMarch2007.html.

[13] P. Sachse, W. Hacker, S. Leinert, External thought-does sketching
assist problem analysis?, Applied Cognitive Psychology 18 (2004)
415–425.

[14] B. Buxton, Sketching User Experiences: Getting the Design Right
and the Right Design, Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 2007.

[15] S. Greenberg, S. Carpendale, N. Marquardt, B. Buxton, Sketching
User Experiences - TheWorkbook, Academic Press, 2012. URL: http:
//store.elsevier.com/product.jsp?isbn=9780123819598.

[16] J. A. Landay, B. A. Myers, Interactive Sketching for the Early Stages
of User Interface Design, in: Proc. of the ACM Int. Conf. on Hu-
man Factors in Computing Systems, CHI ’95, ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA, 1995, pp. 43–50.
URL: http://dx.doi.org/10.1145/223904.223910. doi:10.1145/223904.
223910.

[17] A. Coyette, S. Faulkner, M. Kolp, Q. Limbourg, J. Vanderdonckt,
SketchiXML: Towards a Multi-agent Design Tool for Sketching User
Interfaces Based on UsiXML, in: Proc. of 3rd Int. Conf. on Task
Models and Diagrams, TAMODIA ’04, ACM, NY, 2004, pp. 75–
82. URL: http://doi.acm.org/10.1145/1045446.1045461. doi:10.1145/
1045446.1045461.

[18] A. Coyette, S. Kieffer, J. Vanderdonckt, Multi-fidelity proto-
typing of user interfaces, in: M. C. C. Baranauskas, P. A.
Palanque, J. Abascal, S. D. J. Barbosa (Eds.), Proc. of 11th
IFIP TC13 Int. Conf. on Human-Computer Interaction, Septem-
ber 10-14, 2007, volume 4662 of INTERACT ’07, Springer, 2007,
pp. 150–164. URL: http://dx.doi.org/10.1007/978-3-540-74796-3_
16. doi:10.1007/978-3-540-74796-3_16.

[19] Z. Obrenovic, J.-B. Martens, Sketching Interactive Systems with
Sketchify, ACM Transactions on Computer-Human Interaction 18
(2011) 1–38.

[20] D. Avola, A. Del Buono, G. Gianforme, S. Paolozzi, R. Wang,
SketchML: a Representation Language for Novel Sketch Recogni-
tion Approach, in: Proc. of the 2nd Int. Conf. on PErvasive Tech-
nologies Related to Assistive Environments, PETRA ’09, ACM, New
York, NY, USA, 2009, pp. 31:1–31:8. URL: http://doi.acm.org/10.
1145/1579114.1579145. doi:10.1145/1579114.1579145.

[21] D. Avola, L. Cinque, G. Placidi, SketchSPORE: A Sketch Based Do-
main Separation and Recognition System for Interactive Interfaces,
in: A. Petrosino (Ed.), Image Analysis and Processing, ICIAP’ 13,
Springer, Berlin, Heidelberg, 2013, pp. 181–190.

[22] S. Suleri, V. P. Sermuga Pandian, S. Shishkovets, M. Jarke,
Eve: A sketch-based software prototyping workbench, in: Ex-

tended Abstracts of the ACM Int. Conf. on Human Factors in
Computing Systems, CHI EA ’19, ACM, New York, NY, USA,
2019, pp. LBW1410:1–LBW1410:6. URL: http://doi.acm.org/10.
1145/3290607.3312994. doi:10.1145/3290607.3312994.

[23] P. McInerney, F. Maurer, UCD in agile projects: dream team or odd
couple?, Interactions 12 (2005) 19–23.

[24] T. Buchmann, Towards tool support for agile modeling: Sketching
equals modeling, in: Proceedings of the 2012 Extreme Modeling
Workshop, XM ’12, ACM, New York, NY, USA, 2012, pp. 9–14.
doi:10.1145/2467307.2467310.

[25] C. Lewis, P. G. Polson, C.Wharton, J. Rieman, Testing a walkthrough
methodology for theory-based design of walk-up-and-use interfaces,
in: Proc. of the ACMConf. on Human Factors in Computing Systems,
CHI ’90, ACM, New York, USA, 1990, pp. 235–242. doi:10.1145/
97243.97279.

[26] V. Genaro Motti, D. Raggett, S. Van Cauwelaert, J. Vanderdonckt,
Simplifying the development of cross-platformweb user interfaces by
collaborative model-based design, in: Proceedings of the 31st ACM
International Conference on Design of Communication, SIGDOC
’13, ACM, New York, NY, USA, 2013, pp. 55–64. URL: http://doi.
acm.org/10.1145/2507065.2507067. doi:10.1145/2507065.2507067.

[27] H. Ossher, A. van der Hoek, M.-A. Storey, J. Grundy, R. Bel-
lamy, Flexible modeling tools (flexitools2010), in: Proc. of 32nd
ACM/IEEE Int. Conf. on Software Engineering-Volume 2, ICSE ’10,
ACM Press, New York, USA, 2010, pp. 441–442.

[28] D. Wüest, N. Seyff, M. Glinz, FlexiSketch: A Mobile Sketching Tool
for Software Modeling, in: D. Uhler, K. Mehta, J. Wong (Eds.),
Proc. of Mobile Computing, Applications, and Services, volume 110
of Lecture Notes of the Institute for Computer Sciences, Social In-
formatics and Telecommunications Engineering, Springer, 2013, pp.
225–244. doi:10.1007/978-3-642-36632-1_13.

[29] D.Wuest, N. Seyff,M. Glinz, Flexisketch team: Collaborative sketch-
ing and notation creation on the fly, in: Software Engineering (ICSE),
2015 IEEE/ACM 37th IEEE Int. Conf. on, volume 2, 2015, pp. 685–
688. doi:10.1109/ICSE.2015.223.

[30] R. Mitra, Rapido: A Sketching Tool for Web API Designers, in:
Proc. of 24th Int. Conference on World Wide Web, WWW ’15 Com-
panion, Int. World Wide Web Conf. Steering Committee, Republic
and Canton of Geneva, Switzerland, 2015, pp. 1509–1514. doi:10.
1145/2740908.2743040.

[31] T. Hammond, R. Davis, Tahuti: A geometrical sketch recognition sys-
tem for uml class diagrams, in: AAAI Spring Symposium on Sketch
Understanding, 2002, pp. 59–68.

[32] N. Mangano, M. Dempsey, N. Lopez, A. van der Hoek, A demon-
stration of a distributed software design sketching tool, in: Proc. of
the 33rd Int. Conf. on Software Engineering, ICSE ’11, ACM, New
York, NY, USA, 2011, pp. 1028–1030. URL: http://doi.acm.org/10.
1145/1985793.1985985. doi:10.1145/1985793.1985985.

[33] J.Melchior, J. Vanderdonckt, P. VanRoy, Amodel-based approach for
distributed user interfaces, in: Proc. of the 3rd ACM Symposium on
Engineering Interactive Computing Systems, EICS ’11, ACM, New
York, NY, USA, 2011, pp. 11–20. URL: http://doi.acm.org/10.1145/
1996461.1996488. doi:10.1145/1996461.1996488.

[34] J.-L. Pérez-Medina, S. Dupuy-Chessa, A. Front, A Survey of Model
Driven Engineering Tools for User Interface Design, in: M. Winck-
ler, H. Johnson, P. Palanque (Eds.), Proc. of 6th Int. Workshop on
Task Models and Diagrams for User Interface Design, TAMODIA
’07, volume 4849 of Lecture Notes in Computer Science, Springer,
Berlin, 2007, pp. 84–97. doi:10.1007/978-3-540-77222-4_8.

[35] G. Johnson, M. D. Gross, J. Hong, E. Y. Do, Computational support
for sketching in design: A review, Foundations and Trends in Human-
Computer Interaction 2 (2009) 1–93.

[36] M. Johansson,M.Arvola, A case study of how user interface sketches,
scenarios and computer prototypes structure stakeholder meetings, in:
Proc. of the 21st British HCI Group Annual Conference on People and
Computers, vol. 1, BCS-HCI ’07, British Computer Society, Swin-
ton, UK, 2007, pp. 177–184. URL: http://dl.acm.org/citation.cfm?id=
1531294.1531318.

40

http://doi.acm.org/10.1145/1031607.1031698
http://doi.acm.org/10.1145/1031607.1031698
http://dx.doi.org/10.1145/1031607.1031698
https://doi.org/10.1109/ICDAR.2005.218
http://dx.doi.org/10.1109/ICDAR.2005.218
http://dx.doi.org/10.1109/ICDAR.2005.218
http://doi.acm.org/10.1145/2317956.2318013
http://doi.acm.org/10.1145/2317956.2318013
http://dx.doi.org/10.1145/2317956.2318013
http://www.ambysoft.com/surveys/agileMarch2007.html
http://store.elsevier.com/product.jsp?isbn=9780123819598
http://store.elsevier.com/product.jsp?isbn=9780123819598
http://dx.doi.org/10.1145/223904.223910
http://dx.doi.org/10.1145/223904.223910
http://dx.doi.org/10.1145/223904.223910
http://doi.acm.org/10.1145/1045446.1045461
http://dx.doi.org/10.1145/1045446.1045461
http://dx.doi.org/10.1145/1045446.1045461
http://dx.doi.org/10.1007/978-3-540-74796-3_16
http://dx.doi.org/10.1007/978-3-540-74796-3_16
http://dx.doi.org/10.1007/978-3-540-74796-3_16
http://doi.acm.org/10.1145/1579114.1579145
http://doi.acm.org/10.1145/1579114.1579145
http://dx.doi.org/10.1145/1579114.1579145
http://doi.acm.org/10.1145/3290607.3312994
http://doi.acm.org/10.1145/3290607.3312994
http://dx.doi.org/10.1145/3290607.3312994
http://dx.doi.org/10.1145/2467307.2467310
http://dx.doi.org/10.1145/97243.97279
http://dx.doi.org/10.1145/97243.97279
http://doi.acm.org/10.1145/2507065.2507067
http://doi.acm.org/10.1145/2507065.2507067
http://dx.doi.org/10.1145/2507065.2507067
http://dx.doi.org/10.1007/978-3-642-36632-1_13
http://dx.doi.org/10.1109/ICSE.2015.223
http://dx.doi.org/10.1145/2740908.2743040
http://dx.doi.org/10.1145/2740908.2743040
http://doi.acm.org/10.1145/1985793.1985985
http://doi.acm.org/10.1145/1985793.1985985
http://dx.doi.org/10.1145/1985793.1985985
http://doi.acm.org/10.1145/1996461.1996488
http://doi.acm.org/10.1145/1996461.1996488
http://dx.doi.org/10.1145/1996461.1996488
http://dx.doi.org/10.1007/978-3-540-77222-4_8
http://dl.acm.org/citation.cfm?id=1531294.1531318
http://dl.acm.org/citation.cfm?id=1531294.1531318

J.L. Pérez-Medina et al. / Journal of Visual Language and Computing (2019) 29–41

[37] J. R. Wallace, S. D. Scott, Contextual design considerations for co-
located, collaborative tables, in: Proc. of the 3rd IEEE Int. Workshop
on Horizontal Interactive Human Computer Systems, TABLETOP’
08, IEEE, 2008, pp. 57–64.

[38] J. Bowen, A. Dittmar, A Semi-formal Framework for Describing
Interaction Design Spaces, in: Proc. of the 8th ACM Symposium
on Engineering Interactive Computing Systems, EICS ’16, ACM,
New York, NY, USA, 2016, pp. 229–238. URL: http://doi.acm.org/
10.1145/2933242.2933247. doi:10.1145/2933242.2933247.

[39] B. S. da Silva, V. C. O. Aureliano, S. D. J. Barbosa, Extreme design-
ing: binding sketching to an interaction model in a streamlined HCI
design approach, in: Proc. of 7th Brazilian symposium on human
factors in CS, ACM Press, New York, USA, 2006, pp. 101–109.

[40] M. K. Rasmussen, G. M. Troiano, M. G. Petersen, J. G. Simonsen,
K. Hornbæk, Sketching shape-changing interfaces: Exploring vo-
cabulary, metaphors use, and affordances, in: Proc. of the ACM Int.
Conf. on Human Factors in Computing Systems, CHI ’16, ACM, New
York, NY, USA, 2016, pp. 2740–2751. URL: http://doi.acm.org/10.
1145/2858036.2858183. doi:10.1145/2858036.2858183.

[41] J. Müller, F. Alt, D. Michelis, A. Schmidt, Requirements and design
space for interactive public displays, in: Proc. of the 18th ACM Int.
Conf. on Multimedia, MM ’10, ACM, New York, NY, USA, 2010,
pp. 1285–1294. URL: http://doi.acm.org/10.1145/1873951.1874203.
doi:10.1145/1873951.1874203.

[42] D. Loksa, N. Mangano, T. D. LaToza, A. v. d. Hoek, Enabling a class-
room design studio with a collaborative sketch design tool, in: Proc.
of the Int. Conf. on Software Engineering, ICSE ’13, IEEE Press,
Piscataway, NJ, USA, 2013, pp. 1073–1082. URL: http://dl.acm.org/
citation.cfm?id=2486788.2486935.

[43] G. Costagliola, M. De Rosa, V. Fuccella, Local context-based recog-
nition of sketched diagrams, Journal of Visual Langages and Com-
puting 25 (2014) 955–962.

[44] R. Bellamy, M. Desmond, J. Martino, P. Matchen, H. Ossher,
J. Richards, C. Swart, Sketching tools for ideation (nier track), in:
33rd Int. Conference on Software Engineering, ICSE ’11, ACM, New
York, NY, USA, 2011, pp. 808–811. doi:10.1145/1985793.1985909.

[45] M.D. Rosa, A. Fish, V. Fuccella, R. Saleh, S. Swartwood, G. Costagli-
ola, A toolkit for knot diagram sketching, encoding and re-generation,
in: G. Polese, V. Deufemia (Eds.), The 22nd International Confer-
ence on Distributed Multimedia Systems, DMS 2016, Salerno, Italy,
November 25-26, 2016., KSI Research Inc. / Knowledge Systems In-
stitute Graduate School, 2016, pp. 16–25. URL: https://doi.org/10.
18293/DMS2016-035. doi:10.18293/DMS2016-035.

[46] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon, J. Van-
derdonckt, A Unifying Reference Framework for multi-target user
interfaces, Interacting with Computers 15 (2003) 289–308.

[47] M. Beaudouin-Lafon, Designing interaction, not interfaces, in:
M. F. Costabile (Ed.), Proc. of the ACM Int. Working Conference
on Advanced Visual Interfaces, AVI ’04, ACM Press, 2004, pp.
15–22. URL: https://doi.org/10.1145/989863.989865. doi:10.1145/
989863.989865.

[48] J. Coutaz, C. Lachenal, S. Dupuy-Chessa, Ontology for multi-
surface interaction, in: Proc. of the IFIP TC13 Int. Conf. on Human-
Computer Interaction, 1st-5th September 2003, INTERACT ’03, IOS
Press, 2003.

[49] O. Shaer, E. Hornecker, Tangible user interfaces: past, present, and
future directions, Foundations and Trends in Human-Computer Inter-
action 3 (2010) 1–137.

[50] P. Milgram, F. Kishino, A taxonomy of mixed reality visual dis-
plays, IEICE Transactions on Information and Systems 77 (1994)
1321–1329.

[51] B. Ullmer, H. Ishii, Emerging frameworks for tangible user interfaces,
IBM Systems Journal 39 (2000) 915–931.

[52] B. J. Finch, Operations Now: Profitability, Processes, Performance,
McGraw-Hill/Irwin, Boston, 2006.

[53] J. Wu, J.-y. Lv, Z.-k. Ye, M. Rui, Optimization Design of Fa-
cilities Layout in a Certain Machining Shop, in: Proc. of 2nd
Int. Conf. on Information Technology and Management Engineering,

ITME’ 17, DEStech Publications, Inc, Lancaster, Pennsylvania, 2017.
URL: http://dpi-proceedings.com/index.php/dtcse/article/view/7986.
doi:10.12783/dtcse/itme2017/7986.

[54] M. Mandviwalla, L. Olfman, What Do Groups Need? A Proposed
Set of Generic Groupware Requirements, ACM Transactions on
Computer-Human Interaction 1 (1994) 245–268.

[55] R. Muntean, Considering Collaboration in ?eleẁk̀w—Belonging,
in: Proc. of the 3rd Int. Workshop on Interacting with Multi-
Device ecologies" in the wild", Cross-Surface’ 16, 2016. URL: http:
//cross-surface.com/papers/Cross-Surface_2016-2_paper_9.pdf.

[56] D. Wüest, N. Seyff, M. Glinz, Collaborative sketching and notation
creation with FlexiSketch Team, Software Engineering 2017 (2017).

[57] N. Mangano, A. Baker, A. Van Der Hoek, Calico: a prototype sketch-
ing tool for modeling in early design, in: Proc. of the 2008 Int. Work-
shop on Models in software engineering, ACM Press, New York,
USA, 2008, pp. 63–68.

[58] N. Mangano, T. D. LaToza, M. Petre, A. van der Hoek, Supporting
informal design with interactive whiteboards, in: Proc. of the ACM
Int. Conf. on Human Factors in Computing Systems, CHI ’14, ACM,
New York, NY, USA, 2014, pp. 331–340. URL: http://doi.acm.org/
10.1145/2556288.2557411. doi:10.1145/2556288.2557411.

[59] J. Thom-Santelli, D. Cosley, G. Gay, What do you know?: Experts,
novices and territoriality in collaborative systems, in: Proc. of the
ACM Int. Conf. on Human Factors in Computing Systems, CHI ’10,
ACM, New York, NY, USA, 2010, pp. 1685–1694. URL: http://doi.
acm.org/10.1145/1753326.1753578. doi:10.1145/1753326.1753578.

[60] B. Kitchenham, R. Pretorius, D. Budgen, O. P. Brereton, M. Turner,
M. Niazi, S. Linkman, Systematic literature reviews in software engi-
neering – a tertiary study, Information and Software Technology 52
(2010) 792 – 805.

41

http://doi.acm.org/10.1145/2933242.2933247
http://doi.acm.org/10.1145/2933242.2933247
http://dx.doi.org/10.1145/2933242.2933247
http://doi.acm.org/10.1145/2858036.2858183
http://doi.acm.org/10.1145/2858036.2858183
http://dx.doi.org/10.1145/2858036.2858183
http://doi.acm.org/10.1145/1873951.1874203
http://dx.doi.org/10.1145/1873951.1874203
http://dl.acm.org/citation.cfm?id=2486788.2486935
http://dl.acm.org/citation.cfm?id=2486788.2486935
http://dx.doi.org/10.1145/1985793.1985909
https://doi.org/10.18293/DMS2016-035
https://doi.org/10.18293/DMS2016-035
http://dx.doi.org/10.18293/DMS2016-035
https://doi.org/10.1145/989863.989865
http://dx.doi.org/10.1145/989863.989865
http://dx.doi.org/10.1145/989863.989865
http://dpi-proceedings.com/index.php/dtcse/article/view/7986
http://dx.doi.org/10.12783/dtcse/itme2017/7986
http://cross-surface.com/papers/Cross-Surface_2016-2_paper_9.pdf
http://cross-surface.com/papers/Cross-Surface_2016-2_paper_9.pdf
http://doi.acm.org/10.1145/2556288.2557411
http://doi.acm.org/10.1145/2556288.2557411
http://dx.doi.org/10.1145/2556288.2557411
http://doi.acm.org/10.1145/1753326.1753578
http://doi.acm.org/10.1145/1753326.1753578
http://dx.doi.org/10.1145/1753326.1753578

42

M. Coccoli et al./ Journal of Visual Language and Computing (2019) 43-52

DOI reference number: 10.18293/JVLC2019N1-007

Collaborative E-learning Environments with Cognitive
Computing and Big Data
Mauro Coccolia, Paolo Marescab, Andrea Molinaric

aUniversity of Genoa, DIBRIS, Genoa, Italy
bFederico II University, DIETI, Naples, Italy
cUniversity of Trento, DII, Trento, Italy, and School of Industrial Engineering and Management, Lappeenranta University of Technology, Finland
__

A R T I C L E I N F O

Article History:
Submitted 4.8.2019
Revised 4.30.2019
Second Revision 5.20.2019
Accepted 8.13.2019

Keywords:
Cognitive computing
Big data
Collaborative systems
Technology-enhanced learning
E-learning.

A B S T R A C T

The actual scenario of e-learning environments and techniques is fast-changing from both the
technology side and the users’ perspective. In this vein, applications and services as well as
methodologies are evolving rapidly, running after the more recent innovations and thus adopting
distributed cloud architectures to provide the most advanced solutions. In this situation, two influential
technological factors emerge: the former is cognitive computing, which can provide learners and
teachers with innovative services enhancing the whole learning process, also introducing
improvements in human-machine interactions; the latter is a new wave of big data derived from
heterogeneous sources, which impacts on educational tasks and acts as enabler for the development of
new analytics-based models, for both management activities and education tasks. Concurrently, from
the side of learning techniques, these phenomena are revamping collaborative models so that we should
talk about communities rather than classrooms. In these circumstances, it seems that current Learning
Management Systems (LMS) may need a redesign. In this respect, the paper outlines the evolutionary
trends of Technology-Enhanced Learning (TEL) environments and presents the results achieved within
two experiences carried on in two Italian universities.

© 2019 KSI Research h

1. Introduction

Technology and society are undergoing a continuous
evolution process, which is pushing innovation and
driving the development of novel solutions in almost any
field of application. The wide adoption of such solutions
in a plethora of services that are commonly available on
the Web for daily operations heavily impacts on users’
behaviors and expectations. Specifically, with reference
to the Technology-Enhanced Learning (TEL) scenario,
we observe significant steps ahead in techniques and
methodology. As a consequence, technological solutions
are subjected to continuous upgrades to cope with these,
to the aim of improving the quality of services, the

 aCorresponding author
Email address: mauro.coccoli@unige.it
ORCID: 0000-0001-5802-138X

usability, the overall performances, the effectiveness of
education, and to provide learners with a more pervasive
experience. Accordingly, e-learning environments and the
relevant tools have been growing in complexity, i.e.,
traditional Learning Management Systems (LMS), based
on a centralized architecture, are moving towards clusters
of Massive Open Online Courses (MOOC) platforms in
cloud-based distributed architectures [1] and Learning
Objects (LO) include more and more videos and
multimedia interactive artifacts. Concurrently, LMSs
have been exploring new spaces of possibilities; among
these, we mention the adoption of users’ profiling
techniques and analytics to the aim of tailoring
personalized learning paths and activities as well as to
predict students’ careers, to achieve a further
empowerment of the individual learning model. A clear
synthesis of the more significant evolutionary steps of
learning solutions is presented in [2] where the changes

43

M. Coccoli et al./ Journal of Visual Language and Computing (2019) 43-52

occurred in tools, services, learning strategies,
methodologies, and delivery techniques are arranged
along a timeline. It is worth noticing that the achieved
progresses are not just replacements of the previously
adopted solutions, yet they are characterized by one or
more of the following: (i) extension of capabilities; (ii)
improvement of performances; (iii) promotion of
different educational approaches and methodologies; (iv)
change in the way contents are delivered; (v) change in
the users’ interaction model. Despite the methodology is
sound, the analysis concerns the period from 2001 to 2015
and, since then, many changes have occurred, mainly due
to the rise of big data and cloud computing.

In this respect, we highlight that the introduction of

cognitive computing can enable a number of new
functionalities [3] and that the adoption of this new
paradigm also reflects on the learning process, as schools
and universities must face with new jobs and new training
demands since new knowledge and skills should be
promptly delivered [4], also pushed by big data. As a
result, it seems that LMSs have reached their maturity
stage in the innovation adoption curve, since they are
pervasively adopted by learning providers at any level,
from the primary schools up to higher education
institutions, to the aim of guaranteeing the most effective
implementation of TEL solutions. Nevertheless, most
LMSs hardly can cope with the high degree of
interoperability and complexity that novel paradigms
require, hence they should expand their boundaries
offering new services and rethink the whole design
process, considering the labor market and industry needs
too. In this respect, the paper discusses the evolutionary
trends of e-learning and presents the results achieved
within two experiences carried on in two Italian
universities: (i) an innovative didactic approach to
software engineering, adopting advanced technologies
and mixed solutions in a cloud infrastructure; (ii) a novel
collaborative learning environment that surpasses the
typical functionalities of the more prominent LMSs.

We highlight that such experiences are driving TEL
platforms towards new standards where both learners and
teachers, rather than technology, will be at the center.

The remainder of the paper is structured as follows: in

Section 2 we present some related works investigating
these topics; Section 3 outlines the main drivers for the
development of the next generation TEL platforms; in
Section 4 we report the experience of a cognitive-
computing-based laboratory, while in Section 5 we depict
a newly developed e-learning collaborative environment.
Section 6 concludes the paper also giving hints on future
development directions.

2. Related works

As highlighted in the previous section, we are going to
focus on two phenomena: (a) big data, and (b) cognitive
computing. In fact, the possibility of gathering
information from a wide number of heterogeneous
sources, combined with the unprecedented opportunities
of processing such data by means of sophisticated
cognitive computing techniques, is reshaping the
technological scenario of e-learning applications,
allowing the improvement of existing methodologies as
well as imagining new ones.

Moreover, the possibility of recording, storing and
aggregating information, can significantly improve
learning performances of both students and teachers [5].
For these topics, we report a number of related works that
illustrate different solutions showing how variedly these
two aspects can empower e-learning methodologies and
how platforms are evolving with new functionalities.
From a quick analysis of the relevant literature, i.e.,
searching indexing services such as Science Direct,
Scopus and Web of Science, we found several
publications on these challenging topics, enlightening
that, more and more, LMSs offer such services among
basic tools or as add-on functionalities.

2.1 The impact of big data on e-learning

 Due to the presence of big data, a number of significant
changes has occurred in education and in e-learning
systems. Their impact on the academic environment is
investigated in [6], where the authors’ expectation is that
a change will suddenly occur in the way e-learning is
approached by both students and teachers. In this respect,
based on the currently available software solutions, they
propose a system architecture fostering universities to
constitute consortia to analyze, organize and access huge
data sets in common, in a cloud-based environment. A
similar approach is also considered in [7], which proposes
a strategy to improve outcomes of the education process
through the collaboration among universities at an
international level, to the aim of supporting the teaching
and learning process by means of shared e-learning
services. The integrated framework presented links the
individual impact with the organizational impact,
promoting a collaborative culture model.

As hinted, another key factor for the empowerment of e-

learning services, is their integration with information
from other platforms and services, given that a large
amount of data is accessible in, e.g., online communities,
blogs, discussion forum, messaging services, and social
network sites. In this respect, [8] showcases some
effective learning analytics techniques to derive
knowledge from unstructured and large blobs of

44

M. Coccoli et al./ Journal of Visual Language and Computing (2019) 43-52

information. Specifically, the paper focuses on tracking
students’ data to help them succeed. To this aim, the
authors investigate the various types of analytics tools that
different universities and institutions adopted, to discuss
how faculty can exploit such data to monitor and predict
the students’ performances, to finally enhance them.
Moreover, [9] investigates the same large amount of
information freely available over the Web, to explore the
opportunities of using such data to get enhancements in
all the stages of the learning process, not only in
assessments. Following the same current, [10] shows an
example of how to fruitfully exploit big data for the
prediction of students’ performances, to the aim of
optimizing their careers.

We point out that, currently, social media can play a
vital role with respect to e-learning systems and the
effectiveness of information is strongly tied to the way we
process these data. In this respect, [11] states that the
application of big data with e-learning is a hot topic,
which has the potential for creating a huge impact on the
whole education system.

We also highlight that processing big data in an

effective way is only possible relying on complex
cognitive computing solutions implementing suited
machine learning techniques. Such techniques allow to
cope with data characterized by large volume, different
types, high speed, uncertainty and incompleteness, and
low value density. Going deep in technical details,
algorithms and methods (e.g., representation learning,
deep learning, distributed and parallel learning, transfer
learning, active learning, and kernel-based learning) is out
of the scope of this paper, however the interested readers
can find a survey of how machine learning is used for big
data processing in [12]. Other references can be found in
[13], which showcases a large understanding of past,
present and future directions in this domain, made through
a mapping of the characteristics of cognitive computing,
i.e., observation, interpretation, evaluation and decision,
versus the so-called V’s of big data, i.e., Volume, Variety,
Veracity, Velocity and Value.

2.2 The impact of cognitive computing on e-learning

From the side of cognitive computing, there are only
recent works that deal with such advanced techniques
used in e-learning applications, for example to serve the
instructional design process, helping to find personalized
learning assets and improving the definition of individual
learning strategies or classifying resources. Among these,
[14] focuses on recommendation systems implemented on
the basis of cognitive services. The paper envisages the
possibility of using the same approach to meet the needs
of students and teachers, especially to enable personalized
learning strategies and implement recommendation

systems for educational resources, based on information
derived from the interactions between students. The
authors propose the prototype of a platform and survey the
approaches to develop advanced TEL solutions, analyzing
the state of the art of using cognitive systems in e-
learning, identifying paradigms and pedagogical
methodologies, techniques, tools and learning objects
with respect to the recommendation of pedagogical
activities using cognitive computing. In [15], the authors
use cognitive systems for the automated classification of
learning videos, with special reference to MOOCs, i.e.,
exploiting the capabilities of Automatic Speech
Recognition (ASR) and Optical Character Recognition
(OCR) services to extract text from audio and visual
frames so to be able to perform classifications based on
taxonomies. Further developments of this work led the
authors to find a solution overcoming traditional term-
based methods, which analyzes the content of large video
collections by means of cognitive services such as: (i)
Speech-to-Text tool to get video transcripts, and (ii) the
use of Natural Language Processing (NLP) methods to
extract semantic concepts and keywords from the above
video transcripts [16].

2.3 Empowering e-learning methodologies

Besides, from the methodology perspective, [17]
introduces the idea of big education, applying the
paradigm of big data to the whole education process to
predict students’ performances, based on individuals’
learning attitudes and their after-school activities too. This
seems a promising vein, since also [18] theorizes about
cognitive analytics driven personalized learning, which
can be achieved owing to the advances in cognitive
computing for analyzing unstructured data such as, e.g.
blogs, discussions, e-mail, and course messages, to gain
insights into student learning at an individual level.

New functionalities are strictly connected to new
technologies such as, for example, the mix of learning and
semantic technologies through the use of ontologies for
the description of domains (see, e.g., [19] and references
therein) and the availability of sophisticated cloud
infrastructures is required to handle properly such a huge
quantity of information, as well as the design and
development of new learning environments, supporting
suited machine learning technologies as reported in [20].

2.4 Privacy and security issues

Finally, we observe that when considering big-data-
capable learning applications another paramount item
emerges, that is the students’ data protection. In fact,
personal information in the e-learning frameworks can be
very detailed, thus very precise profiling can be obtained
and used maliciously for different scopes, such as, e.g.,

45

M. Coccoli et al./ Journal of Visual Language and Computing (2019) 43-52

remarketing. As well as privacy, security cannot be
neglected and should be considered one of the most
important factors in the design of TEL platforms [21]. For
example, this topic was faced in [22], which clearly
presents possible threats of considering big data within e-
learning platforms.

3. Emerging trends in TEL

According to the above considerations, we propose a
new point of view on TEL platforms, enlightening the
main characteristics they should offer. Their design must
consider the new wave of cognitive services for their use
in advanced solutions and for their ability to cope with the
huge amount of data circulating within the learning
frameworks and the connected software environments
outside the LMS (e.g., discussion forums and blogs, social
network sites, indexing services, digital libraries, etc.). In
more detail, personal data about learners, their learning
tasks, scores in the assignments, etc. should be stored and
historicized to the aim of improving the whole learning
and teaching process, also including administrative
information to monitor how learning processes are
conducted and make an assessment to the aim of
predicting performances through suited learning
analytics. More precisely, we state that the next-
generation TEL platforms will offer pervasive cognitive
services.

From the side of the learning process, we have to

consider two different aspects: (i) learners will acquire
new knowledge thanks to the educational strategy and
methodology adopted, and (ii) at the same time, machines,
systems and platforms will acquire information about
learners and their individual learning processes, owing to
cognitive services. However, thinking of cognitive
services merely as the result of an algorithm is not a good
starting point: there is something more because learning
does not derive from a software algorithm but also from
the complex hardware architecture it relies on. In fact,
cognitive services can be effective only within a parallel
architecture, whose capabilities must be suited to the
learning needs of the algorithm itself. In other words,
since the algorithm must be trained, we often need
substantial memory and computational resources to be
implied in educational processes based on a cognitive
approach. The personalization of cognitive services may
require additional hardware and software resources and
thus, for this reason, when defining a cognitive TEL, we
have to go beyond a basic hardware configuration to face
to possible personalization issues, which may require a
system flexible enough to adapt over time its
characteristics to the use we will make of it, in the
perspective of a lifelong learning support to our
knowledge growth. Such features can be achieved through

the adoption of cloud architectures, Infrastructure as a
Service (IaaS), Platform as a Service (PaaS) and Software
as a Service (SaaS) solutions. Furthermore, feedback is
needed to improve the effectiveness of this approach, and
we should be able to observe the system and get feedback
to perform real-time tuning operations.

In the light of the above considerations, it is required to

build innovative architectures for the platforms that aim
to provide innovative didactics, able to change
configuration quickly in order to adapt its functionalities
to the different needs of both learners and teachers. In
particular, we believe that a wise adoption of the best of
some services from multiple vendors, in the same
platform, could improve the satisfaction of end users as
well as solve some structural problems of the laboratories.
In fact, often university laboratories need to be scalable
for different number of students attend classes or they
may need to serve different educational activities (e.g.,
quizzes, lessons, exercises, application laboratories,
exams, etc.). Sometimes they must even be scaled up to
more applicative situations, i.e., performing tests for
research projects or experiments. Specifically, Section 4
provides a detailed description of the innovative learning
environment that the Federico II University in Naples,
Italy, setup, based on the above concepts.

Moreover, we observe that e-learning platforms and

applications continuously change together with learning
itself and learners’ attitude and needs. In many cases,
educational paths are designed in collaboration with
institutions from other countries, i.e., to promote mobility
of both workers and researchers, in other cases a strict
interaction with industries and the labor market is
required. Consequently, performing educational tasks in a
“classroom”, whether real of virtual, may be limiting the
perspective of what today a smart education should be.
Hence, in order to stay competitive, formal education
models should expand their boundaries also involving the
external world and this can only be achieved through the
adoption of suited technological solutions for online
collaboration, interoperability, data exchange, and the
seamless integration with legacy systems. The
implementation of such solutions requires suited
machinery and infrastructures as well as a paradigm shift
able to drive the transformation of classrooms into
communities to enhance humans’ faculties and
empowering the transformation of their skills so that, in
such new “places”, we can speak of men and machines,
rather than men or machines. Even in this case a specific
example is presented and Section 5 depicts the
characteristics of the innovative e-learning platform
developed at the University of Trento, Italy. platforms.

46

M. Coccoli et al./ Journal of Visual Language and Computing (2019) 43-52

4. An integrated environment for
exponential learning

This section provides a detailed description of the
innovative learning environment setup at the Federico II
University in Naples, Italy, based on cognitive computing
to implement exponential learning. We recall that
cognitive computing was born based on human reasoning
models and this special capability can be exploited
transversally on, potentially, any domain of application,
so that it can be regarded as a real revolution,
exponentially accelerating processes. In the past decades,
we have been accustomed to a swirling growth, according
to the Moore’s law (the number of transistors in a
dense integrated circuit doubles about every two years) or
the analogous Metcalfe’s law for the number of nodes of
a network that clearly explains the enormous dimensions
reached by social networking sites such as, e.g.,
Facebook. However, we were not prepared to cope with
the needed exponential growth of learning caused by the
growth of knowledge, which is in turn derived by the
growth of data processed with novel Artificial
Intelligence (AI) techniques. Consequently, the learning
environments should be promptly adapted to this reality.

4.1 The hardware and software setup

According to the above considerations, the Federico II
University in Naples, Italy, setup a laboratory with suited
hardware and software configurations, providing students
of the “Software engineering” class with the possibility to
use the most advanced methodologies and tools to
develop quite complex projects within their assignments
and to share their results with mates. Previously, the
authors already carried on didactic activities focusing on
computer programming in collaborative environments
(see, e.g., [23], [24], and references therein) but cognitive
computing has accelerated this need, thus enabling more
ambitious projects to be implemented both from the point
of view of the hardware resources that can be used and the
complexity of the software that can be used. The
implemented solution is an integrated environment
offering high-level tools for cognitive computing design
and programming. Specifically, after a preliminary
analysis and a series of stress tests, Microsoft Azure and
IBM Cloud have been identified as the best-matching
solutions for developing cognitive-computing-based
projects. Owing to their cloud-based architecture, both
platforms can coexist in the same installation, where they
can be used simultaneously if needed, allowing to realize
the needed PaaS and SaaS infrastructures.

More precisely, students can use the cognitive e-
learning platform from both IBM Cloud and Microsoft
Azure with relevant laboratory and customized virtual
machines. Taking advantage of such a mixed

configuration, enables students to disregard hardware and
software issues, focusing on their individual learning
tasks. Besides, they can use complex machines simply
through a browser, which is a strong point because they
may have to use laptops or even personal computers with
poor performances. To better clarify, we highlight that the
Azure environment offers different profiles for sizing the
hardware machine. One can choose one of the following:
(i) courses, (ii) laboratories, and (iii) exams. Then, the
decision to instantiate a laboratory session or to take part
in an exam session is up to the user. The only
requirements are the availability of a PC and a network
connection. In more detail, the teacher can, in a laboratory
consisting solely of the PCs that students bring with them,
instantiate an exam session on the fly. Then, the students
will have to use their institutional credentials to log into
the system, where they can access a personalized
dashboard and choose which activity to carry on such as,
e.g., laboratory, exams etc. Even if a student is taking an
exam, in the same classroom, at the same time, other
students can perform different activities. For example,
writing and compiling a Java program within the Eclipse
IDE as well as entering the IBM Cloud platform, and also
use, e.g., the IBM Watson cognitive services.

4.2 Some results

At the end of the activities, the platform allows students
to assess the effectiveness and ease-of-use of the
environments they used. In particular, they were asked to
provide their overall feedback on satisfaction and
usability. In order to evaluate the global satisfaction of the
platform we considered an ordinal scale with values
between 5 and 8. The students were asked to express their
opinion after working on the platform for several hours.
More precisely, Figure 1 shows that 87% of users gives a
medium-high evaluation (scores 7-8), while only 13%
believes that the platform has low-sufficient usability
(scores 5-6).

Fig. 1. Results from the questionnaires on users’ satisfaction.

47

M. Coccoli et al./ Journal of Visual Language and Computing (2019) 43-52

Since these integrated environments of multiple
technologies may be too complex for young students, we
have also asked a feedback on usability whose results are
shown in Figure 2. In order to measure the usability of the
platform we used an ordinal scale of values between 5 and
9. Students, in a slightly lower number (36 vs. 38),
expressed their opinion about the usability of the platform
after working on it for the didactic projects they were
engaged in. More precisely, Figure 2 shows that the 61%
of students gives a medium-high evaluation (scores 7-8-
9), while only 39% (scores 5-6) believes that the platform
has low-sufficient usability. Besides, students were also
asked to express suggestions and possible improvements.
From this analysis it emerges that students experienced
some difficulties, due to the presence of two different
environments but also for the functionalities, rather
different from the classical university-laboratory setup
they are used to, which offer only basic tools.

Fig. 2. Results from the questionnaires on usability.

In conclusion, the integrated environment in use was

judged satisfactory with respect to the functions it had to
perform. Given its apparent complexity, we consider such
results quite positive and encouraging for the prosecution
of this experiment also in the next academic years, in new
classes and with a growing number of students.

5. From classrooms to communities

According to the above considerations, in this section
we depict the characteristics of an innovative e-learning
platform developed at the University of Trento, Italy. As
highlighted in previous sections, classrooms should shift
to communities and in such new places both students and
teachers will be able to enhance humans’ faculties and
empowering their skills transformation, also owing to
modern technologies and new paradigms for the possible
relationships between men and machines. Specifically,
we will discuss the Online Community (OLC) project.

5.1 The online community (OLC) project

 The project started back in 1998 with the idea of
implementing a different approach to educational content
management, in contrast to proprietary platforms like
WebCT™ and Blackboard™, which were dominant at
that time. In this scenario, OLC was created from scratch,
after having considered three possible alternative
solutions: (i) adopting a commercial platform; (ii)
adapting free-open source software to the needs of
educational environments, as Moodle or similar where not
existing yet (iii) building a brand-new platform. Finally,
the third option, despite having the traditional pros and
cons of every “make” solution, was chosen for other
motivations that now, in the idea of innovating e-learning
systems with new cognitive services, revealed to be the
right decision. Compared to the adoption of commercial
software, the Total Cost of Ownership (TCO) of this kind
of solution was probably too high especially in the
hypothesis of an extension, not counting the rest of the
associated costs for maintenance, management and
training, when compared to budget limits. We observed in
the following years that this is a very common reason for
the adoption of Free and Open Source Software (FOSS)
platforms such as, e.g., Moodle by many small-medium
educational institutions like high schools and universities.
Put simple, being free of charge is the main reason for
adopting this solution, without taking care of the side
effects on the educational processes that it implies. In fact,
a software platform implements processes in a rigid way
once they have been coded, so the adoption of this
component forces the institution to customize, adapt or
even change the way things can be done because “the
system does not allow me to do differently”. As a
secondary effect, the connection of the LMS with the rest
of the organization’s information system is mostly
impossible [25]. As a consequence, many system
administrators, are adapting their needs to the software
system that, somehow, is able to solve most of their
problems, and they mostly are resistant if not reluctant to
develop an internal solution. Money, availability of
qualified resources, short time to implement the solution,
these all are comprehensible reasons for choosing the easy
way of acquiring a pre-cooked solution.

We consider much more important to have the
possibility of investing in a platform that can be easily
extended with new services according to the needs of
those trainers willing to experience the use of computer
technologies in their educational processes. We therefore
decided to develop a completely new platform, and very
soon the platform was transformed from a mere LMS to a
more structured platform devoted to support collaboration
among members of a virtual community. The idea of
“classroom” that is lying behind most of the LMS
available today is, in our opinion, very restrictive with

48

M. Coccoli et al./ Journal of Visual Language and Computing (2019) 43-52

reference to the more complex processes that normally
happen inside educational tasks, and can be extended to
any other collaboration environment where collaboration
among participants to the community are mediated by
technologies. In other words, the idea of a customized
LMS that could constitute a competitive advantage for
one university versus another one is established [26]. This
personalized software is able to supply better and
personalized services that ease procedures and processes
for the different users such as students, professors, or
administrative personnel. Finally, a second decisive item
was the need of deep integration with the rest of the legacy
information system: authentication with single sign-on,
integration with exam records and administrative
procedures, possibility of bi-directionally exchange news
and messages among people living the university day-by-
day routine. Substantially, creating the platform from
scratch was related with the rejection of “one-size-fits-all”
approach to software components of an information
system. Many administrators of the information system,
especially in the educational sector, are adapting their
needs to the software system that, somehow, is able to
solve most of their problems, and they mostly are resistant
if not reluctant to develop an internal solution. Money,
availability of qualified resources, short time to
implement the solution, these all are comprehensible
reasons for choosing the easy way of acquiring a pre-
cooked solution.

This adaptation of educational tasks to software
platforms is a typical situation where many institutions are
lying today. Because teams not always have the
knowledge and resources to modify existing (open
source) software educational platforms (i.e., LMSs like
Moodle), they normally “adapt” themselves to what the
platform supplies out-of-the-box, thus limiting the
innovation potential of their ideas, and forcing users to
adapt their learning processes to the improper
technological tool. The typical example is the use of social
media (the one that is more appreciated by learners in that
moment) to support educational tasks. Social media such
as, e.g., Facebook, Twitter, WhatsApp and Instagram are
great tools when applied to the context they have been
originally created, mostly exchanging multimedia
information among peers. Yet, it is not so easy to integrate
them in the educational processes: it is clearly a technical
problem of available software Application Programming
Interfaces (API), but it is also an instructional design
problem introducing issues on how to cope the style of the
lecture, how is changing the role of the teacher and what
are the expectations of learners about the use of social
media. In fact, an educational process is something wider
than posting a photo or retweeting others’ comments,
even if it can benefit of this situation. Sometimes,
educational processes need the support of other tools and
services, that Facebook (for example) can provide through

a distorted usage of its services. This normally forces
users (mainly educators) to adapt their learning processes
to what the platform provides, while it should be exactly
the opposite, i.e., the platform should be able to adapt its
services to the users’ needs. The same happens with
LMSs: most of the educational organizations have no
possibilities of intervention, nor adaptation or
modification on software platforms that have the size and
complexity of Moodle, and so they adapt their educational
processes to what the chosen platform provides as
standard services.

5.2 Latest innovation

The innovative aspect that we introduced with OLC, and
that now constitutes an extra advantage, is therefore
reverting this master-slave approach that sees software
platform as masters and end-users as slaves. The approach
followed by OLC is to construct from scratch those
services identified as relevant by educational experts,
based on the precise educational needs of the different
users: teachers, students or any other role involved. OLC
has some architectural aspects there are very important for
our argumentation about a next generation of TEL
platforms: (i) we own and have created every single line
of the source code, so the whole knowledge of the
platform architecture and its potential are not scattered
among different contributors (like in many open source
projects); (ii) the platform is equipped with a micro
service architecture, thus allowing an easy extension of
the platform itself with new parts but taking advantage of
the many services that any LMS should provide both to
users and to developers that want to extend it; (iii) some
services have been already developed in the past towards
the direction of providing “intelligent” services. Owning
and knowing the whole source code of the platform means
to have a great advantage if you want to extend it with
innovative elements, so the idea of using OLC as a basis
for cognitive computing has been straightforward.
Nevertheless, some crucial evolutionary changes had to
be applied to the platform, and these changes are the key
success factors for this shift:

a) stimulate interaction: the platform should encourage
users to interact, not just to download files with teacher’s
slides. Today, the vast majority of LMSs are used solely
to download files, while interactive and more participative
services are left to the availability in the platform (if any)
and/or at the goodwill of the teacher;

b) pervasive and enriched logging: the platform should
log actions of users in order to activate cognitive
processes: logging is essential for cognitive computing in
order to classify users and infer the best service at the best
moment. This logging should not be just the web
application server logging, but specialized, application-

49

M. Coccoli et al./ Journal of Visual Language and Computing (2019) 43-52

level logging are needed to capture specific actions inside
the single page of the LMS;

c) extensible, service-based architecture: the platform
must be extensible through a service-by-design approach,
in order to add new services whenever new possibilities
can be explored. A micro service architecture is highly
recommendable;

d) inference-oriented persistence layer: in order to
facilitate inference, reasoning and cognitive computing
algorithm, the persistence layer of web platform should be
updated to more efficient and flexible data structures [20].

On this basis, a set of profound re-engineering

operations has been implemented inside OLC. For
example, we extended the platform towards a semantic
representation of the knowledge inside the contents of the
platform. We also integrated some soft computing, fuzzy-
logic-based decision support systems [1], to support
decision makers with intelligent tools about educational
processes. Moreover, we experimented new storage
layers, in order to collect data not only from traditional
sources inside the educational environment (i.e., files,
forums, galleries, posts, photos, etc.), but also collecting
a lot of analytical information about the use of the
platform and its services by the users. This immediately
opens the problem of the size and appropriateness of
traditional relational databases. We performed some
experiments in substituting some parts normally stored in
relational tables into triples available for a semantic
knowledge representation. This meant using triple stores
in the beginning as a persistence layer, thus facilitating
operations like inference, reasoning, machine learning,
etc. The triple (or quadruple) format for persisting (part
of) data relevant for decision making and cognitive
computing is another step that is not currently available in
mainstream LMSs.

To better clarify the above concepts, let us consider as
an example the diagram sketched in Figure 3, which
depicts the preparation process of proper data sources for
big data integration and analysis. The first step is the
selection of the data from the persistence of OLC. This
persistence is a typical big data source, with structured
and unstructured information (file, learning objects, blog
posts, forum topics, wikis, etc.) created inside the
platform itself. The idea is to separate such data from the
rest of the platform, to create the background to be able to
apply the cognitive algorithms. So, in a sense, this
resembles an Extract Transform and Load (ETL) process,
typical in any data warehouse as well as OLAP and data
mining solution. The most part of information is coming
from the first data source we used in our experimentation,
due to its affinity with big data sources, that we call
“Actions”. This service collects all data coming from
users’ interactions with other OLC objects or services. In
practice, it acts like a sensor introduced inside the source

code of the platform in any place the software needs to
capture an “action” from the user interface. This is a
relevant enrichment of the logs recorded by the web
application server, and has been used for many different
purposes. Due to volume issues, the system at the moment
is blocked on collecting only some types of events, to a
certain granularity defined by the system administrator.
This choice has not been a design choice, but a
performance-related one. In fact, it was clear from the
early experimentations that the amount of data could have
been compromising the capacity of the DBMS to stand
with data acquisition pace and volumes: that is a typical
“Velocity” an “Volume” big data problem.

Fig. 3. Overview of the big data preparation process for the analytics
tools.

In more detail, there are several elements of data
gathering and manipulation pushing our virtual learning
environment towards big data, thus increasing the need of
a structural change of LMSs architecture, which should
adopt new approaches and technologies. Specifically, we
mention:
• traditional weblogs, being the application a Web-

based software;
• internal logs of usage of the platform, the so-called

digital breadcrumbs, that track the learner’s journey
throughout the entire learning experience;

• mobile logs, where data about mobile learning
actions are collected;

• service logs, users’ actions on the different elements
of the platform like documents, forums, blogs, FAQs
etc.;

• logs from the SCORM player, normally an external
entity respect to the core services of the platform,
with the records of the objects’ execution;

• X-API calls, in case the platform is connected or
acting as a Learning Record Store (LRS);

• MOOCs, by definition a generator of high volumes
of data;

50

M. Coccoli et al./ Journal of Visual Language and Computing (2019) 43-52

• lifelong learning, an old buzzword of e-learning that
is still valid and interesting and, most of all, is another
generator of big data, specifically along time;

• serious games that will use materials inside the
platform, thus generating a relevant dataset related
with users’ performances.

The next step in the pipeline is the execution of

cognitive tasks which can materialize implicit knowledge
to support learning processes. At the moment, this
reasoning is limited to basic inference regarding actions
performed on certain parts and services of the platform,
but the mechanism is ready for larger application
scenarios. When the inference process is complete and
new knowledge is inferred, a set of administrative
routines is executed to load and transform part of the
knowledge base to feed applications persistence.

6. Conclusions

As a conclusion, we remark that nowadays we are on a
turning point in which cognitive-computing-based
approaches are significantly transforming many aspects
of our lives. In fact, beside the changes we can notice in
professional applications and high-end software and
legacy systems, we are already experimenting a set of
cognitive computing services in everyday activities, for
example, through natural user interfaces and voice
assistants, whose presence is becoming pervasive. In
practice, more often than we think, we are interacting with
machineries that apply sophisticated decision-making
processes with very low time constraints and a high level
of accuracy. E-learning is one of the fields of application
that can mostly benefit from this situation, due to its
complexity and to the variety of disciplines that must be
adopted concurrently to achieve good learning outcomes.
Especially, the use of big data strongly empowers the
process of personalization and individualization of the
learning processes. Moreover, e-learning is also called to
provide suited solutions to the problem of learning to use
and exploit such new technologies, which cannot be
achieved in environments designed for generic purposes.
This raises the problem of developing a new generation of
TEL platforms.

The paper introduces the vision of the authors, where a
self-made, highly customizable virtual community
platform will be integrated with scalable, top-notch cloud
platforms and congruent cognitive algorithms applied to
the different parts of learning processes, from material
selection to educational path suggestions, from peer
evaluation to big data discovery for decision makers. The
process is still in its infancy, mostly because these three
worlds (TEL platforms, cloud services and cognitive
computing) are still separated and mostly focus on their

own scope. What we are trying to do is merge the three
disciplines into one single research area, with precise
objectives and deliverables, thus allowing e-learning to
maximize the advantages of the fusion of the three.

The two experiences presented in this paper can be
regarded as an embryo for the development of future,
unpredictable e-learning solutions. To this aim, the results
achieved while using the integrated environment for
exponential learning deployed at the Federico II
University convinced us to scale the process on a wider
and even younger audience, in order to test the real
simplicity of such a TEL environment. Another lesson
learned is that the surrounding world has become so
complex and the changes so rapid that they will never be
as slow as in the past. We should not waste our precious
time any more in installing software, configuring
applications, customizing solutions, tuning databases,
maintaining laboratories, etc. Students and teachers
definitely have to devote their intellectual power to more
creative and less repetitive activities. Moreover, the
applications we started using will increasingly have to
analyze large amounts of data and therefore be cognitive.
Future developments of the OLC also will follow in the
direction of providing more advanced cognitive services
and making the best from the available information
mixing data from different online sources.

References

[1] Bouquet P., Molinari A. (2016) “A new approach to the use of

semantic technologies in e-Learning platforms”. International
Journal of Advanced Corporate Learning, Vol. 9, No. 2, pp. 5–12.

[2] Anshari M., Alas Y., Sei Guan L. (2016) “Developing online
learning resources: Big data, social networks, and cloud computing
to support pervasive knowledge”. Education and Information
Technologies, Vol. 21, pp. 1663–1677.

[3] Coccoli M., Maresca P., Stanganelli L. (2016) “Cognitive
computing in education”. Journal of e-Learning and Knowledge
Society, Vol. 12, No. 2, pp. 55–69.

[4] Coccoli M., Maresca P., Stanganelli L. (2017) “The role of big data
and cognitive computing in the learning process”. Journal of
Visual Languages & Computing, Vol. 38, pp. 97–103.

[5] Medrizzi M., Molinari A. (2013) “A multi-expert fuzzy TOPSIS-
based model for the evaluation of e-Learning paths”. Proceedings
of the 8th Conference of the European Society for Fuzzy Logic and
Technology, pp. 554–558.

[6] Banica L., Radulescu M. (2015) “Using big data in the academic
environment”. Procedia Economics and Finance, Vol. 33, pp. 277–
286.

[7] Mahmod M.A., Ali A.M. (2018) “Promotion the e-learning success
in universities in Baghdad through enhancing their organizational
innovative collaboration environment: A qualitative study”.
International Journal on Perceptive and Cognitive Computing,
Vol. 4, No. 1, pp. 12–18.

[8] Dietz-Uhler B., Hurn J.E. (2013) “Using learning analytics to
predict (and improve) student success: A faculty perspective”.
Journal of Interactive Online Learning, Vol. 12, No. 1, pp. 17–26.

[9] Kolekar S.V., Pai R.M., Pai M. M. M. (2017) “Prediction of
learner’s profile based on learning styles in adaptive e-learning

51

M. Coccoli et al./ Journal of Visual Language and Computing (2019) 43-52

system”. International Journal of Emerging Technologies in
Learning, Vol. 12, No. 6, pp. 31–51.

[10] Yu T., Jo I.H. (2014) “Educational technology approach toward
learning analytics: relationship between student online behaviour
and learning performance in higher education”. Proceedings of the
4th International Conference on Learning Analytics and
Knowledge, pp. 269–270.

[11] Sheshasaayee A., Malathi S. (2017) “Impact and consequences of
big data in e-learning”. Proceedings of the International
Conference on Innovative Mechanisms for Industry Applications,
pp. 726–729.

[12] Qiu J., Wu Q., Ding G., Xu Y., Feng S. (2016), “A survey of
machine learning for big data processing”. URASIP Journal on
Advances in Signal Processing, Vol. 67.

[13] Gupta S., Kumar Kar A., Baabdullah A., Al-Khowaiter W.A.A.
(2018) “Big data with cognitive computing: A review for the
future”. International Journal of Information Management, Vol.
42, pp. 78–89.

[14] Leitão G.d. S., Valentin E. B., Oliveira E. H. T.d., Barreto R.d. S.
(2018) “Survey on pedagogical resources recommendation using
cognitive computing systems”. Proceedings of the IEEE Frontiers
in Education Conference, pp. 1–7.

[15] Dessì D., Fenu G., Marras M., Reforgiato Recupero D. (2017)
“Leveraging cognitive computing for multi-class classification of
e-learning videos”. In Blomqvist E., Hose K., Paulheim H.,
Ławrynowicz A., Ciravegna F., Hartig O. (eds), The Semantic
Web: ESWC 2017, Lecture Notes in Computer Science, Vol.
10577, Springer, Cham.

[16] Dessì D., Fenu G., Marras M., Reforgiato Recupero D. (2019)
“Bridging learning analytics and cognitive computing for big data
classification in micro-learning video collections”. Computers in
Human Behavior, Vol. 92, pp. 468–477.

[17] Cen L., Ruta D., Ng J. (2015) “Big education: opportunities for big
data analytics”. Proceedings of the IEEE International Conference
on Digital Signal Processing, Singapore, pp. 502–506.

[18] Gudivad V.N. (2017) “Cognitive analytics driven personalized
learning”. Educational Technology, Vol. 57, No. 1, pp. 23–31.

[19] Coccoli M., Torre I. (2014) “Interacting with annotated objects in
a Semantic Web of Things application”. Journal of Visual
Languages & Computing, Vol. 25, No. 6, pp. 1012–1020.

[20] Bouquet P., Molinari A (2012) “Semantic technologies and e-
learning: Towards an entity-centric approach for learning
management systems”. Journal of E-Learning and Knowledge
Society, Vol. 8, No. 2, pp. 65–84.

[21] Caviglione L., Coccoli M. (2018) “Smart e-learning systems with
big data”. International Journal of Electronics and
Telecommunications, Vol. 64, No. 4, pp. 445–450.

[22] Habegger B., Hasan O., Brunie L., Bennani N., Kosch H., Damiani
E. (2014) “Personalization vs. privacy in big data analysis”.
International Journal of Big Data, pp. 25–35.

[23] Coccoli M., Maresca P., Stanganelli L., Guercio A. (2015) “An
experience of collaboration using a PaaS for the smarter university
model”. Journal of Visual Languages & Computing, Vol. 31, pp.
275–282.

[24] Maresca P., Guercio A., Stanganelli L. (2012) “Building wider
team cooperation projects from lessons learned in open
communities of practice”. Proceedings of the 18th International
Conference on Distributed Multimedia Systems, pp. 144–149.

[25] Colazzo L., Molinari A., Villa N. (2009) “Social networks, virtual
communities and learning management systems: Towards an
integrated environment”. Proceedings of the 8th IASTED
International Conference on Web-Based Education, pp. 209–215.

[26] Kimball L., (2002) “Managing distance learning: New challenges
for faculty”. In The Digital University - Building a Learning
Community, Springer London, pp. 27–40.

52

J. Werther et al. / Journal of Visual Language and Computing (2019) 53–68

Journal of Visual Language and Computing

journal homepage: www.ksiresearch.org/jvlc

Comprehension of Software Architecture Evolution supported by Vi-
sual Solutions: A Systematic Mapping and a Proposed Taxonomy

Joao Werthera, Glauco de Figueiredo Carneirob and Rita Suzana Pitangueira Maciela

aFederal University of Bahia, Salvador, BRA
bUniversidade Salvador (UNIFACS), Salvador, BRA

A R T I C L E I N F O

Article History:

Submitted 8.1.2019
Revised 8.20.2019
Second Revision 8.20.2019
Accepted 8.20.2019

Keywords:
software architecture
software visualization
software architecture evolution
software architecture comprehension

A B S T R A C T

Context: Software visualization has the potential to support specialized stakeholders to understand the
software architecture (SA) evolution. To the best of our knowledge, there is no guideline to support
the use of visual solutions towards SA evolution comprehension. Goal: Analyze the use of visual
solutions for the purpose of comprehension with respect to software architecture evolution from the
point of view of software architects and developers in the context of both academia and industry.
Method: We conducted a Systematic Mapping Study to achieve the stated goal. Results: The study
identified 211 papers published from January 2000 to May 2019 as a result of the search strings
execution. We selected 21 primary studies and identified a gap in terms of a taxonomy to assist
specialists in the development or classification of solutions to support the comprehension of software
architecture evolution using visual resources. Conclusion: We observed that despite the relevance of
the use of visual solutions to support the comprehension of software architecture evolution, only 21
studies have reported these initiatives, suggesting that there is still room for the use of different visual
metaphors to represent its components, relationships and evolution throughout the releases.

© 2019 KSI Research

1. Introduction

Software evolution reflects changes undergone by the soft-
ware during its lifespan [1] [2]. The study of software evo-
lution is essential to better support changes in software re-
quirements over time, keeping its integrity at a lowest pos-
sible cost [3] [4] [5]. Software Architecture (SA) is the de-
sign model used to build and evolve a software system [6].
Throughout the analysis of the software architecture, it is
possible to understand the dimensions along which a sys-
tem is expected to evolve [1]. The importance of SA in soft-
ware evolution process is that a software built without an
adaptable architecture normally will degenerate sooner than
others with a change-ready architecture [1]. The evolution
of a SA can be the result of changes in the current SA to
accommodate business demands, new technologies and/or

jwertherf@gmail.comn (J. Werther); glauco.carneiro@unifacs.br
(G.d.F. Carneiro); ritasuzana@dcc.ufba.br (R.S.P. Maciel)

www.unifacs.br (G.d.F. Carneiro); pgcomp.dcc.ufba.br (R.S.P.
Maciel)

ORCID(s): 0000-0001-6241-1612 (G.d.F. Carneiro);
0000-0003-3159-6065 (R.S.P. Maciel)

platform or other reason that impacts the SA [7]. The com-
prehension of SA is essential for the development and evo-
lution of software systems [8][9] and can be supported by
software visualization resources to understand key SA char-
acteristics regarding architectural models and design deci-
sions [8] [10].

Software Visualization (SV) has been used to support
the SA comprehension in the context of software systems.
This support usually occurs through the use of different vi-
sual metaphors to represent its components, relationships
and evolution throughout the releases [9]. The use of visual
solutions to represent SA and its architecture design decision
can improve significantly their understanding [9]. SA visu-
alization may concern with the evolution of its components
throughout the releases, not only its static visualization [11].

To the best of our knowledge, there is no guideline to
support the use of visual solutions towards SA evolution com-
prehension. For this reason, we conducted this Systematic
Mapping Study (SMS) to identify evidence in the literature
on this issue provided by papers published in peer-reviewed
conferences and journals from January 2000 to May 2019.

DOI reference number: 10.18293/JVLC2019N1-008
53

J. Werther et al. / Journal of Visual Language and Computing (2019) 53–68

From the 211 studies retrieved by the search string applied
in specific electronic databases, we selected 21 studies to
gather evidence to answer the stated research questions.

We aim at identifying strengths, weaknesses and research
gaps related to the use of visual solutions to support the com-
prehension of software architecture evolution. Additionally,
the analysis of the selected papers allowed us to identify
the opportunity to propose a taxonomy to characterize and
evaluate visual solutions to support the comprehension of
SA evolution, representing their main characteristics, prop-
erties and features. According to Price, Baccker and Small
(1993) [12], a well-founded taxonomy provides a common
terminology and a set of related concepts that facilitate the
communication and classification of information in a spe-
cific area, enabling the identification and cataloging of new
discoveries and ideas in this area. The selected studies were
classified using the category dimension of the proposed tax-
onomy as follows: 14% were categorized as Description,
38% as Technique, 67% as Tool and 19% as Environment.
Besides the category dimension, the proposed taxonomy con-
tains other five additional dimensions: stage, visualization
form, static representation, dynamic representation and ar-
chitectural tasks.

This paper is an extension of an earlier conference pa-
per [13]. Our original work related a systematic mapping
conducted for analyze the use of visual solutions for the pur-
pose of comprehension with respect to software architec-
ture evolution from the point of view of software architects
and developers in the context of both academia and indus-
try. In this extension work, a new version of this system-
atic mapping, we adjusted the PICO criteria to build a new
version of the search string maintaining the original goal
and research questions. We aimed at increasing the number
of selected papers and therefore improve the findings dis-
cussed in this study. We also included a new background sec-
tion to present a contextualization of issues related to soft-
ware architecture, software evolution, architecture evolution,
software visualization and software architecture visualiza-
tion considered relevant in this systematic mapping. We also
narrowed the interval of publication of searched papers by
changing the upper bound of the interval from December
2018 to May 2019. However, we did not identified impact
of this change in the number of retrieved papers.

The remainder of this paper is organized as follows. Sec-
tion 2 shows a brief contextualization on software architec-
ture, software architecture evolution and their respective re-
lationships with software visualization. Section 3 discusses
related works and Section 4 presents the design we adopted
to conduct this SMS. The Section 5 reports the results and
findings of this study, and proposes a new taxonomy for vi-
sual solutions to software architecture evolution. The Sec-
tion 6 presents the answers to the stated research questions.
Finally, we conclude and mention future work in Section 7..

2. Background
SA refers to a set of components of a software system,

their connections and their principles and guidelines to man-
age the development and evolution during software life cycle
[14]. SA describes the system’s structure, interaction of its
components and their core properties, playing an important
role as an interface between requirements and source code
[15]. SA is a possible mean to provide evidence if in fact the
software is in compliance with its non-functional require-
ments (e.g performance, reliability, scalability, etc.) [15].
SA is also used to describe high-level structures and behav-
ior of a software system [16], which contributes to support
the software evolution [17]. In addition, SA provides a better
understanding of the software to its stakeholders [15].

Software evolution refers to the dynamic behavior of soft-
ware systems as they are submitted to changes over time [18]
[19]. The analysis of software evolution is essential to both
understand past and to plan future changes in the software,
keeping its integrity (mainly the architectural one), at a low-
est possible cost [20]. The importance of SA in software
evolution process is that a software built without an adapt-
able architecture is prone to have shorter lifespan than others
that have a change-ready architecture, impairing its evolu-
tion over time [21]. The analysis of SA evolution signifi-
cantly improves the perception of software evolution. SA
allows the planning and restructuring of the software system
in a high level of abstraction, being a valuable reference for
the discussion with stakeholders regarding the quality and
business trade-off [7]. The comprehension of SA is essen-
tial for the development and evolution of software systems.
Due to the amount of information, this task can be more ef-
fective when supported by resources that help to soften the
required cognitive effort to perform it [11].

Shahin, Liang and Khayyambashi [9] argued that the use
of SV to represent SA and also its evolution can improve the
comprehension of both. In fact, SV provides solutions to
support SA comprehension and its corresponding evolution
[8]. The SA visualization is an important area in SV [11] and
visually represents components and structures from a given
SA associated with its architecture design decisions [6]. It
may involve not only the visualization of software structures
and their relationships, but also the evolution of these struc-
tures in the software lifespan [11]. Gallagher, Hatch and
Munro (2008) [22] stated that SA visualization can improve
the comprehension of software systems for all their stake-
holders in all their aspects, along their evolution. Besides
being fundamental to discuss and understand the SA in ac-
cordance with the variety of project stakeholders, SA visu-
alization is also critical for decisions related to SA [23] and
can visually represent some architectural design decisions
[6]. In the framework proposed by Gallagher, Hatch and
Munro (2008) [22] to evaluate SA visualization tools, one
of the features of the key area Task Support (TS) is the TS
Show evolution. The question of this feature using the GQM
approach [24] was “Does visualization show the evolution
of software architecture?". This framework considers that a
SA visualization tool should indeed provide facility to show

54

J. Werther et al. / Journal of Visual Language and Computing (2019) 53–68

evolution, whether in basic or advanced way [22].

3. Related Works
Software visualization has been used in different areas

of software engineering such as software architecture, soft-
ware evolution and software design [8][25]. In the following
paragraphs we present results provided by a selection of sec-
ondary studies that discussed the use of software visualiza-
tion to support the execution of activities targeting software
architecture. This is not an exhaustive list, it is rather an
illustrative set of relevant papers that motivated the conduc-
tion of this systematic mapping.

Shahin, Liang and Babar [8] conducted a systematic re-
view to characterize the use ofVisualization Techniques (VT)
to represent SA in different application domains. Results
classified theVTs into four types, according to its popularity:
graph-based, notation-based, matrix-based andmetaphor-based.
From this set, the graph-based stood out for its popularity
in industry. The same authors argued that VTs have been
used to support SA activities for several purposes: (i) the
understanding of architecture evolution; (ii) the understand-
ing of static characteristics of architecture; and (iii) search,
navigation, and exploration of architecture design [8]. Addi-
tionally, the systematic review reported that VTs have been
applied to support SA related activities in a large range of
domains. From those domains, software graphics and dis-
tributed system have received special attention from the in-
dustry. Finally, the authors argued that SV is one of the in-
teresting ways to support the understanding of the rationale
behind design decisions that affect software architecture [8].
It should be mentioned that Shahin, Liang and Babar [8] fo-
cused on VT to represent SA. They did not discussed the use
of SV to support activities related to the comprehension of
SA evolution.

Telea, Voinea and Sassenburg (2010) [25] performed a
survey to investigate the use of visual tools for the compre-
hension of SA from the perspective of stakeholders. They
analyzed the results using software architecture visualiza-
tions tools (AVTs) aiming to guide industrial practitioners in
the adoption of tools and techniques according requirements
and capabilities of each type. The authors considered three
types of stakeholders: technical users (developers), project
managers/lead architects, and consultants. They concluded
that AVTs were effective to support technical users and less
adequate for consultants, according to expectancy of each
stakeholder [25]. Although Telea, Voinea and Sassenburg
(2010) [25] fovused on the use of visual solutions for SA
comprehension, they did not focused on SA evolution solu-
tions.

Breivold, Crnkovic and Larson (2012) [1] conducted a
systematic review focusing on software architecture evolu-
tion. The goal of the review was to provide an overview at
the architectural level of existing approaches in the analy-
sis of software evolution, and also examine possible impacts
of this theme on both research and industry. The authors
identified five main categories related to this theme: (i) tech-

Table 1
The Goal of this SMS according to the GQM Approach

Analyze the use of visual solu-
tions

for the purpose of comprehension
with respect to software architecture

evolution
from the point of view
of

software architects and
developers

in the context of both academia and
industry

niques supporting quality consideration during software ar-
chitecture design, (ii) architectural quality evaluation, (iii)
economic evaluation, (iv) architectural knowledge manage-
ment, and (v) modeling techniques [1]. The conclusion of
this study emphasized the need of development and improve-
ment of methods, process and/or tools to design architecture
in large systems, due to the amount and complexity of ar-
tifacts produced and used during their respective lifecycle.
This study also presented conclusions for researchers and
practitioners, including considering the possibility to elab-
orate new ideas beyond Lehman’s lays (about software evo-
lution). Additionally, this paper also reported the existence
of only few works targeting the theme, indicating the need
of more research effort in this ares [1]. Despite Breivold,
Crnkovic and Larson (2012) [1] studied the evolution of SA,
they did not emphasized how visual solutions can be used to
support the comprehension of SA evolution.

We could identify the relevant contribution of the afore-
mentioned studies to the SA area, including SA evolution.
However, they did not focused on visual solutions to support
the comprehension of the SA evolution.

4. Research Design
We conducted a SMS to find evidence for the use of vi-

sual solutions to support the comprehension of SA evolution
during the software lifespan. A SMS is a form of a system-
atic literature review (SLR)withmore general research ques-
tions, aiming to provide an overview of the given research
[26]. We decided to conduct a SMS due to the potential that
this methodology has to reduce the analysis bias, through the
establishment of selection procedures [27].
4.1. Planning

The protocol we adopted to conduct this secondary study
was comprised of objectives, criteria for considering papers,
research questions, selected electronic databases, search strings,
selection procedures, exclusion, inclusion and quality crite-
ria to select the studies from which we aim to answer the
stated research questions [27]. The protocol of this SMS and
related artifacts are available in a public Github repository 1.
The goal of this study is presented in Table 1 according to
the GQM approach [28].

1https://github.com/jvlc2019saevolution/submission

55

J. Werther et al. / Journal of Visual Language and Computing (2019) 53–68

Table 2
PICO Criteria for Search Strings

(P)opulation studies in software architecture
(I)ntervention visual solutions to support the comprehension

of software architecture evolution
(C)omparison not applicable
(O)utcomes solutions (i.e., tools, techniques, environment,

approaches, models or methodology) with
focus on visual resources to support soft-
ware architecture evolution; visual solutions
to software architecture evolution; use of vi-
sual resources to comprehension of software
architecture evolution

The Research Question (RQ) is “How have researchers
and practitioners from academia and industry used software
visual solutions to support the comprehension of software
architecture evolution based on papers published in the peer-
reviewed literature?". This research question is in line with
the goal of this review, and has been derived into four spe-
cific research questions, as follows: Specific Research Ques-
tion 1 (SRQ1): What are the main visual solutions to support
the software architecture evolution comprehension? Spe-
cific Research Question 2 (SRQ2): What are the purposes of
each visual solution to support the software architecture evo-
lution comprehension? SpecificResearchQuestion 3 (SRQ3):
How the solutions designed to visually support comprehen-
sion of software architecture evolution can be classified?
Specific Research Question 4 (SRQ4): Which visual forms
are used to support comprehension of software architecture
evolution?

The motivation behind RQ is justified by the acknowl-
edgment that the comprehension of the software architecture
evolution is required to tackle issues or improvements related
to the software architecture and its evolution throughout re-
leases [23] [6] [9] [8] [7] [3]. The specific research questions
have the goal to gather evidence to support the answer of the
stated RQ.

We considered the PICO criteria to define the search strings,
as shown in Table 2. The search strings are based on this cri-
teria for the selective process of papers for this review.

The formation of the search string applied in the elec-
tronic databases is shown in Tables 3 and 4. The Table 3
refers to major terms for the research objectives, built us-
ing the PICO criteria. We also used of alternative terms and
synonyms of these major terms. For example, the term vi-
sualization can be associated with terms such as visual, vi-
sualizing and visualize. These alternative terms, as shown
in Table 4,are also included in the search string. We built
the final search string by joining the major terms with the
boolean “AND” and joining the alternative terms to the main
termswith the boolean “OR”. The focus of the formed search
strings is to focus on papers targeting the research questions
of this systematic mapping.

Table 5 presents the electronic databases from which we
retrieved the papers along with the respective search strings
used to retrieve the papers. Table 6 presents the criteria for
exclusion and inclusion of papers in this review. The OR
connective adopted in the exclusion criteria, means that the

Table 3
Major terms for the research objectives

Criteria Major Terms
(P)opulation AND “software architecture"
(I)ntervention AND “comprehension" AND “evolution"
(C)omparison Not Applicable
(O)utcomes AND “visual" AND “solution"

Table 4
Alternative terms from majors terms

Major Term Alternative Terms
“evolution" (“evolution" OR “evolve" OR “evolving")
“comprehension" (“comprehension" OR “understanding" OR

“understand" OR “support" OR “analysis"
OR “evaluation" OR “examination" OR
“explore" OR “exploring")

“solution" (“tool" OR “environment" OR “technique"
OR “approach" OR “model" OR “methodol-
ogy" OR “solution")

“visual" (“visualization" OR “visualizing" OR “visual-
ize" OR “visual")

Table 5
Electronic Databases Selected for this SMS

Database and URL Search Strings
Scopus

www.scopus.com (“software architecture" AND (“evolution"
OR “evolve" OR “evolving") AND (“com-
prehension" OR “understanding" OR “un-
derstand" OR “support" OR “analysis" OR
“evaluation" OR “examination" OR “explore"
OR “exploring") AND (“tool" OR “environ-
ment" OR “technique" OR “approach" OR
“model" OR “methodology" OR “solution")
AND (“visualization" OR “visualizing" OR
“visualize" OR “visual")

ACM Digital Library
portal.acm.org (+“software architecture" +(“evolution"

“evolve" “evolving") +(“comprehension" “un-
derstanding" “understand" “support" “anal-
ysis" “evaluation" “examination" “explore"
“exploring") +(“tool" “environment" “tech-
nique" “approach" “model" “methodology"
“solution") +(“visualization" “visualizing"
“visualize" “visual"))

Engineering Village
(Ei Compendex)

www.engineeringvillage.com
(“software architecture" AND (“evolution"
OR “evolve" OR “evolving") AND (“com-
prehension" OR “understanding" OR “un-
derstand" OR “support" OR “analysis" OR
“evaluation" OR “examination" OR “explore"
OR “exploring") AND (“tool" OR “environ-
ment" OR “technique" OR “approach" OR
“model" OR “methodology" OR “solution")
AND (“visualization" OR “visualizing" OR
“visualize" OR “visual"))

IEEE Xplore
ieeexplore.ieee.org (“software architecture" AND (“evolution"

OR “evolve" OR “evolving") AND (“com-
prehension" OR “understanding" OR “un-
derstand" OR “support" OR “analysis" OR
“evaluation" OR “examination" OR “explore"
OR “exploring") AND (“tool" OR “environ-
ment" OR “technique" OR “approach" OR
“model" OR “methodology" OR “solution")
AND (“visualization" OR “visualizing" OR
“visualize" OR “visual")

exclusion criteria are independent, i.e., meeting only one cri-
terion is enough to exclude the paper. On the other hand,
the AND connective in the inclusion criteria, means that all
inclusion criteria must met to select the paper under analy-
sis. Table 6 also presents the quality criteria used for this
review represented as questions that were adopted and ad-
justed from Dyba and Dingsoyr [29]. A critical examination
following the quality criteria established in this table was
performed in all remaining papers that passed the exclusion
and inclusion criteria. All these criteria must met (i.e., the
answer must be YES for each one) to permanently select the
paper, otherwise the paper must be excluded. The exclusion,

56

J. Werther et al. / Journal of Visual Language and Computing (2019) 53–68

Table 6
Exclusion, Inclusion and Quality Criteria

Type Id Description Connective
or Answer

Exclusion E1 Published earlier than 2000 OR
Exclusion E2 The paper was not published

in a peer-reviewed journal or
conference

OR

Exclusion E3 The paper does not present a
primary study

OR

Exclusion E4 The paper is not written in
English

OR

Exclusion E5 The paper has less than 3
pages

OR

Inclusion I1 The paper must present an
approach in the usage of
visual solution to support the
comprehension of software
architecture evolution

AND

Quality Q1 Are the aims of the study
clearly specified?

YES/NO

Quality Q2 Is the context of the study
clearly stated?

YES/NO

Quality Q3 Does the research design sup-
port the aims of the study?

YES/NO

Quality Q4 Has the study an adequate
description of the visual
solution?

YES/NO

Quality Q5 Is there a clear statement
of findings by applying the
visual solution to support the
comprehension of software
architecture evolution?

YES/NO

Table 7
Steps of the Selection Process

Step Description
1 Apply the search strings to obtain a list of candidate

papers in specific eletronic databases.
2 Remove replicated papers from the list.
3 Apply the exclusion criteria in the listed papers.
4 Apply the inclusion criteria after reading abstracts, in-

troduction and conclusion in papers not excluded in
step 3.

5 Apply quality criteria in selected papers in step 4.

Table 8
Classification Options for Each Retrieved Paper

Classification Description
Excluded Papers met the exclusion criteria.
Not Selected Papers not excluded due to the exclusion cri-

teria, but did not meet the inclusion or quality
criteria.

Selected Papers did not meet the exclusion criteria and
met both the inclusion and quality criteria.

inclusion and quality criteria were used in the selection pro-
cess as presented in Table 7. According to Table 8, at the end
of the selection process, all the retrieved papers were classi-
fied in one of the three options: Excluded, Not Selected and
Selected.
4.2. Execution

The quantitative evolution of papers throughout the ex-
ecution of this SMS is summarized in Figure 1. The fig-
ure uses the PRISMA flow diagram [30] and shows the per-
formed steps and the respective number of documents for
each phase of the SMS, following the outline described in
Subsection 4.1.

Figure 1: Procedures and its results in the papers selection
process.

Table 9
Effectiveness of the Search Strings

Database

Selected
Papers

Excluded
Papers

Not
Selected
Papers

Replicated
Papers

Total
Search
Results

Search
Effectiveness

ACM Digital
Library 3 3 23 1 30 10.0%

Engineering
Village 2 3 16 35 56 3.6%

IEEE Xplore 12 5 38 7 62 19.4%
Scopus 4 5 16 38 63 6.3%
TOTAL 21 16 93 81 211 10.0%

Table 9 presents the effectiveness of the the search strings
showed in Table 5 considering the 211 retrieved papers. The
electronic database that more contributed with selected stud-
ies was the IEEE Xplore with five papers, corresponding to
a search effectiveness of 18.5%. The twelve selected papers
represented 13.0% of all 211 retrieved papers.

The Figure 2 presents a overview of contribution of each
exclusion criterion in total of excluded papers. The exclu-
sion criterion that had more contribution was the E1 crite-
rion that says “Published date less than 2000", accounting
for 50% of excluded papers.

The Figure 3 presents graphics that provide a overview
of sources (electronic databases) distribution by papers sta-
tus. The papers status is according to Table 8. The Fig-
ure 3a shows the selected papers distribution by source. The
“IEEE Xplore" had the major contribution for selected pa-
pers with 57% of occurrences. The “Scopus" was the second
with 19% of selected studies. The Figure 3b shows the not-
selected papers distribution by source. The “IEEE Xplore"
leaded with 41% of not-selected papers and “ACM Digital
Library" came in second with 25%. The Figure 3c presents
the excluded papers distribution by source. The “Scopus"

57

J. Werther et al. / Journal of Visual Language and Computing (2019) 53–68

Figure 2: Contribution of exclusion criteria in total of ex-
cluded papers.

Figure 3: Overview of paper totalization by status and by
electronic databases.

and “IEEE Xplore" databases had the majors contributions
with 31%of excluded papers each one. The Figure 3d presents
the distribution of all found papers by source. The “Sco-
pus" had the major contribution with 30%, close to “IEEE
Xplore"with 29%of all papers found in its databases searches.

5. Results
The Table 10 shows the list of 21 selected papers of this

systematic mapping. All papers are labeled as “S” followed
by the paper reference number. There is 18 selected pa-
pers that were published in conferences. The other 3 articles
(S02, SO3 and S16) were published in journals. They are
discriminated in the “Venue" column.

The paper S01 [4] describes a solution aimed at enhanc-
ing the comprehension of the software architectural evolu-
tion based on visual resources. This solution proposes the
use of efficient navigation and visualization of the history
of software architectural changes throughout releases, inte-
grating the use of evolution metrics with software visualiza-
tion techniques. This integration has the goal to support both
tracking and analysis of architectural changes from past re-
leases. The authors developed the so called Origin Analysis
method to analyze software structural change. This method
supports the identification of possible origin of function or
file that appears to be new in a later release of the software
system, if it already existed in the system elsewhere [4]. This
method highlights the use of two techniques in its implemen-
tation: Bertillonage Analysis andDependency Analysis. The

paper also performs a study of evolution of a real tool to
demonstrate the use of BEAGLE, a prototype implementa-
tion of this solution that works as an integrated environment
for studying software architecture evolution, as a validation
form of the Origin Analysis [4]. This paper does not discuss
explicitly its limitations, even though cites some of them.

The paper S02 [31] proposes the usage of architecture
stability or resilience concepts to evaluate a SA, using Ret-
rospective Analysis to achieve this goal. Retrospective Anal-
ysis is a technique that verify the amount of changes applied
is successive releases of a software system and analyze how
smoothly the evolution took place. It works with a set of
software metrics based in size, growth, changes and cou-
pling, using visual tools to graphically observe the evolution
of thesemetrics. The authors [31] affirms that theRetrospec-
tive Analysis can have many uses, not only to verify the sta-
bility, but also to calibrate the predictive evaluation results as
well as to predict trends in evolution of software. The paper
describes a case study of twenty releases of a telecommu-
nication software system containing a few million lines of
code to show how Retrospective Analysismay be performed.
However, the paper does not provide any procedures to per-
form the Retrospective Analysis.

The paper S03 [32] introduces a graphical and formal
model to represent architecture styles and their reconfigura-
tions in software evolution. The model specifies a SA using
graphs and graph grammars to represent components (also
called edges) and connections (also referred as nodes). Two
techniques are formally presented. The first uses Synchro-
nized Hyperedge Replacement Systems, dynamically allow-
ing changes of components and connections according to
their synchronization requirements specified in the nodes.
The second technique specifies complex reconfigurations as
transformations over derivations of graph grammars using
lambda-calculus. However, the techniques are only described
in a formal and summarizedway and the paper does not men-
tion any implementation or case study of them [32] .

The paper S04 [33] presents the tool-set and method-
ology Complex Systems Analysis Based Architecture (ABA-
CUS) as a visual solution to model complex systems, com-
prehend their architecture and analyze their characteristics
and its potential changes. The paper reports that ABACUS
allows to collect and merge all enterprise architectural infor-
mation of a system into a unified repository and also evalu-
ate system properties like performance, openness, and evolv-
ability. The paper also highlights that ABACUS provides a
hierarchical 3D visualization to allow to look across the en-
terprise architecture. The authors [33] emphasize that the
use of ABACUS is not only use its tool-set, but also follow
itsmethodology, as illustrated in Figure 4. They conclude af-
firming that the usage of ABACUS allows the architects con-
duct the architecture design and evolution based on quantifi-
able non-functional requirements. However, the paper does
not presents any case study of ABACUS neither presents any
evidence of its practical usage.

The paper S05 [34] proposes a graphical technical de-
scription of the architectural instance of a software system,

58

J. Werther et al. / Journal of Visual Language and Computing (2019) 53–68

Table 10
List of Selected Papers

Ref.
Label Title Venue Year

S01 An integrated approach for studying architectural evolution
[4]

10th International Workshop on Program Comprehension 2002

S02 On architectural stability and evolution [31] Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), Vol. 2361, pp. 13-23 (JOURNAL)

2002

S03 Two graph-based techniques for software architecture
reconfiguration [32]

Electronic Notes in Theoretical Computer Science, Vol. 51,
pp. 177 - 190 (JOURNAL)

2002

S04 The ABACUS architectural approach to computer-based
system and enterprise evolution [33]

12th IEEE International Conference and Workshops on the
Engineering of Computer-Based Systems (ECBS)

2005

S05 An Approach based on Bigraphical Reactive Systems to
Check Architectural Instance Conforming to its Style [34]

First Joint IEEE/IFIP Symp. Theoretical Aspects of Soft-
ware Engineering (TASE)

2007

S06 Exploring Inter-Module Relationships in Evolving Software
Systems [5]

11th European Conference on Software Maintenance and
Reengineering (CSMR)

2007

S07 Technology Infusion of SAVE into the Ground Software
Development Process for NASA Missions at JHU/APL[35]

IEEE Aerospace Conference 2007

S08 The SAVE Tool and Process Applied to Ground Software
Development at JHU/APL: An Experience Report on
Technology Infusion [36]

31st IEEE Software Engineering Workshop (SEW) 2007

S09 Visualizing Software Architecture Evolution Using Change-
Sets [37]

14th Working Conference on Reverse Engineering (WCRE) 2007

S10 YARN: Animating Software Evolution [38] 4th IEEE International Workshop on Visualizing Software
for Understanding and Analysis

2007

S11 Development of a Methodology, Software-Suite and Service
for Supporting Software Architecture Reconstruction [39]

14th European Conf. Software Maintenance and Reengi-
neering

2010

S12 Evolve: tool support for architecture evolution [40] 33rd Int. Conf. Software Engineering (ICSE) 2011
S13 Model-Based Software Architecture Evolution and Evalua-

tion [41]
19th Asia-Pacific Software Engineering Conference 2012

S14 eCITY: A Tool to Track Software Structural Changes Using
an Evolving City [42]

IEEE International Conference on Software Maintenance 2013

S15 Run-time monitoring and real-time visualization of software
architecture [43]

Asia-Pacific Software Engineering Conference, APSEC 2013

S16 eCITY: Evolutionary software architecture visualization -
An evaluation [44]

Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), Vol. 8345 LNCS, pp. 201-224 (JOUR-
NAL)

2014

S17 eCITY+: A Tool to Analyze Software Architectural Rela-
tions Through Interactive Visual Support [45]

European Conference on Software Architecture Workshops 2014

S18 The ARAMIS Workbench for Monitoring, Analysis and Vi-
sualization of Architectures Based on Run-time Interactions
[46]

European Conference on Software Architecture Workshops 2015

S19 Towards the understanding and evolution of monolithic
applications as microservices [47]

42nd Latin American Computing Conference, CLEI 2016

S20 Supporting software architecture evolution by functional
decomposition [48]

5th International Conference on Model-Driven Engineering
and Software Development - MODELSWARD

2017

S21 EVA: A Tool for Visualizing Software Architectural Evolu-
tion [3]

40th International Conference on Software Engineering
(ICSE)

2018

Figure 4: The ABACUS methodology [33]

and verify the compliance to its corresponding style. This
solution is based on the Bigraphical Reactive Systems (BRS)
to perform the verification with formal methods, and uses

an extended version of a Bigraph to describe the instance.
Besides supplying a visual method to specify architectural
instances and styles, the solution proposed can enhance the
ability to design evolving systems. Additionally, the paper
shows two study cases in order to prove the effectiveness of
this solution [34].

The paper S06 [5] proposes an approach based on the
visual representation of inter-module dependencies and re-
lationships between SA components and modules through-
out multiple versions of the software system. The Semantic
Dependency Matrix is a visualization technique that shows
dependencies between two modules with similar behavior
classes. The Edge Evolution Film Strip is a visualization
technique that presents the evolution of an inter-module rela-
tions in a software system along itsmultiples versions. These
techniques were applied in two large open source software
systems, in reverse engineering context, to exemplify them.
The paper also purposes a pattern language for inter-module
relationships. The studied examples are provided from an
exploration prototype named Softwarenaut [5].

59

J. Werther et al. / Journal of Visual Language and Computing (2019) 53–68

The papers S07 [35] and S08 [36] describe the NASA
JHU/APL’s experiences in using the SAVE (Software Archi-
tecture Visualization and Evaluation) tool and process. The
SAVE tool addresses the understanding, maintenance and evolv-
ing issues, allowing software architects to navigate, visual-
ize, analyze, compare, evaluate, and improve their software
systems, all in only one environment. This tool can be also
used to develop a new architecture, compare with the cur-
rent one and still helps in change impact analysis, among
others features. The architecture comparison can also occur
between distinct software systems. The papers show how
the SAVE tool has been successfully applied to the Com-
mon Ground software, a shared software architecture used
by NASA missions software systems, in order to avoid fur-
ther SAmaintenance and evolution problems [35] [36]. How-
ever, the paper S07 [35] reports in more detail the workshops
that exposed the results found by the SAVE tool in the Com-
mon Ground’s architecture analysis and evolution. Despite
the presentation of the tool resources and features along the
studies, these papers do not discuss its limitations.

The paper S09 [37] presents Motive, a prototype of an
alternative approach to comprehension of software and its
architecture evolution, which in addition to showing the evo-
lution or changes of entities or components filtered by pe-
riod and level of abstraction - like most of existing visual
tools for SA evolution - allows users to visualize the net ef-
fect on the SA of any set of logically related changes. This
set is called change-set. Two java open source systems were
used to study and evaluate the Motive tool and this alterna-
tive approach. The authors [37] report that this evaluation
showed that the identification and visualization of the im-
pact of change-sets seems very promising to help architects
and developers comprehend the evolution of a software sys-
tem and its architecture.

The paper S10 [38] introducesYARN (Yet Another Reverse-
engineering Narrative), a prototype tool that implements an
approach to modeling, extracting and animating a SA evolu-
tion. Animating the changing dependencies is an intuitive
and natural way to visually realize, identify and compare
changes over system lifespan. The YARN generates anima-
tion through the YARN balls. The YARN ball is a type of
circle composed by subsystems (vertices) and changing de-
pendencies (edges), as shown in Figure 5. The animation
starts by showing a YARN ball at a chosen baseline and then
showing all the sequences of releases of a YARN ball pro-
gressively. Colour and thickness of edges varying according
to the number of changes and how many dependencies ex-
ist between two modules. One of the suggested uses of a
YARN ball by the authors [38] is to help the communication
between stakeholders of change based dependency informa-
tion in software projects. The authors also report that there
was created an informal user survey to evaluate the useful-
ness of the solution and the understanding of the software
and architecture evolution.

The paper S11 [39] presents the description and goals of
the project titled “Development of a methodology, software-
suite and service for supporting software architecture recon-

Figure 5: Shots of YARN Balls [38]

struction", intended to develop a methodology and a tool-
set (environment) to do automatic architecture reconstruc-
tion of software systems through visual resources utilization.
It also provides tracking of changes in architectural compo-
nents during software evolution. At the time this paper was
written (2010) the project was focused to systems that has
been built using Java or .NET technologies and deal with
SQL databases. This paper presents limitation of its study,
but only in a summarized way. It also shows details of the
current status (2010) of this project [39].

The paper S12 [40] introduces Evolve, a graphical mod-
eling tool that implements an ADL (Architectural Descrip-
tion Language) named Backbone that is focused on software
architecture evolution. Evolve supports definition and evo-
lution of SA using the Backbone, with particular attention to
incremental change and unplanned change processing, very
common activities in the software development and evolu-
tion process. Backbone provides constructs that allow changes
that may result in architectural anomalies but Evolve is able
to detect these anomalies. The paper shows the main charac-
teristics of Evolve and how it deal with changes definition in
SA, besides a brief use historic. The Evolve tool, at the time
the paper was published (2011), was freely available for aca-
demic research and the production of open source software
under the GNU Affero General Public License version 3.

The paper S13 [41] presents and proposes the develop-
ment of ARAMIS (Architecture Analysis and Monitoring In-
frastructure), an architecture meta-model based solution to
extract run-time architecture information and provide data to
generate new dynamic architecture views in real time. The
solution provides visual representations of the monitored ar-
chitecture at several abstraction levels, as well as the avail-
ability of methods to evaluate this architecture [41]. This
study does not present any type of implementation (only tech-
nical description), despite presents some limitations of the
solution.

The paper S14 [42] introduces eCITY, a tool that helps
software architects and developers to understand the soft-
ware structure of their system. It allows the track of compo-
nents’ insertion, removal, or modification over system lifes-
pan and provides an interactive visualization that provides an
overview of changes. All of this implemented under a city
metaphor using animations to represent the transitions of the
architecture components and color coding to highlight the
evolution and changes of these components (Figure 6). The

60

J. Werther et al. / Journal of Visual Language and Computing (2019) 53–68

Figure 6: eCITY : a City View [42]

eCITY provides an overview of the entire system at a desired
point into its evolution process (life cycle), implementing it
under a city metaphor, allowing the user an interactive way
to understand and explore these changes. eCITY provides
views to help the changes over time, like: Timeline View, an
administrative view that uses charts and color to emphasize
changes between software system versions; and City View,
a city layout using animations to represent the transitions of
the architecture components and color coding to highlight
the evolution and changes of these components, as shown in
Figure 6. The eCITY tool works with compile-time infor-
mation, not providing dynamic views [42]. The eCITY was
originally designed as an Eclipse plug-in. This paper also
presents a summary of a conducted user study to emphasize
its usefulness.

The paper S15 [43] describes the implementation results
of some core characteristics ofARAMIS, previously proposed
in S07 [41]. ARAMIS is a approach for evolution and eval-
uation of software systems that relies on a infrastructure of
run-time monitoring to manage the behavior of the system,
in several abstraction levels. In this paper, a prototype of
ARAMIS was developed focused only in reconstruction of
object-level interactions. The prototype uses aspect-oriented
techniques to extract and gather the run-time architectural in-
formation, and the XMPP (Extensible Messaging and Pres-
ence Protocol) to distribute the gathered information for vi-
sualization in real-time, through specialized components, as
we can see in Figure 7. The evaluation of this process, ac-
cording to prototype results, shows that ARAMIS can easily
be used to demonstrate the behavior of the run-time moni-
tored systems [43].

The paper S16 [44] evaluates the eCITY tool, presented
in S14 [42]. The authors designed and conducted a con-
trolled experiment to perform the evaluation. In this ex-
periment, they proposed eCITY as a tool for improving the
analysis of SA evolution along its lifespan. They hoped that
through the use of this tool, the architects would bemore effi-
cient and effective when perform the analysis of architectural
changes. As a result of this experiment, the participants ob-
tained an average gain of 170% in efficiency and an average
gain of 15% in the effectiveness of the basic tasks of SA evo-
lution. The authors [44] considered that efficiencymeans the
time required for accomplishing a set of given tasks and ef-

[h!]

Figure 7: ARAMIS : a Prototype Overview [43]

fectiveness means the difference between the true and actual
score related to a task.

The paper S17 [45] presents eCITY+, an improved ver-
sion of eCITY, presented in S14 [42], now combining the
stable city layout and theHierarchical Edge Bundling (HEB),
an useful technique to help the implementation of 3D visu-
alization with the use of animation. The eCITY+ is a later
version of eCITY tool presented in S08 [42], owning char-
acteristics similar from its predecessor. The eCITY+ tool
primarily differs from its earlier version in the use ofHEB to
highlight changes in both the hierarchical structure as well as
the inter-dependencies between software components. The
eCITY+ tool, as its predecessor, performs analysis of soft-
ware architecture relationships through interactive visual sup-
port, using the city metaphor to provide an overview of the
entire system [45]. The eCITY+ also was consciously devel-
oped as a plug-in to traditional SA maintenance tools.

The paper S18 [46] updates the current status of theARAMIS,
previously presented in S13 [41] and S15[43], presenting
it now for understanding, communication integrity valida-
tion and evaluation of the behavior view of a software ar-
chitecture. This paper analysis a J2EE application to exem-
plify how ARAMIS can automatically validates the commu-
nication between the units of a software system, verifying
if it corresponds to its architecture model, including making
visualizations of these interactions available on higher and
more comprehensible abstraction levels [46].

The paper S19 [47] describes a technical solution tomod-
ernizemonolithic applications intomicroservices using soft-
ware visualization to support the comprehension of evolu-
tion process. This conceptual solution can provide a mod-
ernization process that uses a legacy system and generates
a set of visual diagrams that help architects and developers
to understand the system, also suggesting ways of code par-
titions for transforming into micro-services. The paper has
focus only in an understanding stage of modernization, not
in transformation stage [47]. The authors analyzed a large
Java EE application to validate this solution.

The paper S20 [48] presents a graphical approach that

61

J. Werther et al. / Journal of Visual Language and Computing (2019) 53–68

combines a functional decomposition analysis techniquewith
a non-functional impact analysis technique. Theoretically
the functional decomposition prevents the architecture from
degrading, but sometimes can be too expensive to implement
it. This approach intend to avoid this problem. The func-
tional decomposition technique uses individual relations (as-
sociations and attributes) as atomic units of decomposition,
partitioning them between the subsystems according to how
they are used by the system operations [49]. This technique
facilitates the selection of decompositions of low coupling
and high cohesion. The non-functional impact analysis tech-
nique uses the KAMP (Karlsruhe Architectural Maintain-
ability Prediction) approach [50]. The combination of this
two techniques guarantee a good equilibrium between func-
tional modularity and non-functional concerns. Finally, this
approach is illustrated with an example of evolution of a hy-
pothetical system [48].

The paper S21 [3] introduces EVA (Evolution Visualiza-
tion for Architectures), a visual tool to help software archi-
tects understand the evolution of architecture and therefore
track and analyze architectural changes. This tool can visual-
ize and explore architectures of software systems with a long
life cycle, including stages of its evolution. EVA provides
three main views: Single-Release Architecture View, that
shows the architecture of only one software system version,
as shown in Figure 8a; 3-DArchitecture-Evolution View, that
depicts architectures of multiple software system versions
in a single compositional view, as shown in Figure 8b; and
Pairwise Architecture-Comparison View, that presents the
architectural differences between two software system ver-
sions, as shown in Figure 8c. EVA allows its users to assess
the impact of design decisions, as well as its rationale, which
have influenced in the software architecture. As we can see
in Figure 8, EVA uses color coding to distinct packages or
groups of code level entities. The work is currently (2018)
focused on showing the explicit reasons behind the archi-
tectural changes, in order to assist the rationale of tracking
design during the software lifespan [3]. This article presents
limitations of its study, but does not discuss them explicitly.
The EVA tool was developed in Phyton and is available in a
GitHub repository.

Unfortunately, we could not find any taxonomy to clas-
sify solutions that support the comprehension of SA evo-
lution using visual resources. Then, to improve the under-
standing of these visual solutions previously described, we
propose a taxonomywith the goal to classify their main char-
acteristics, properties and features. Next, we present the tax-
onomy and the corresponding classification of each of the
selected visual solutions in this SMS.
5.1. Taxonomy for Visual Solutions to Support SA

Evolution Comprehension
In this subsection, we present the resulting taxonomy of

visual solutions to support the comprehension of software ar-
chitecture evolution. We argue that the concepts presented in
this taxonomy are key to understand the characteristics of vi-
sual solutions and therefore to answer the research questions

Figure 8: Three Types of Visualization of EVA [3]

of this secondary study. We used the software visualiza-
tion taxonomy proposed by Price, Baecker and Small (1993)
[12] and the framework purposed by Gallagher, Hatch and
Munro (2008) [22] as references. The first focused on soft-
ware visualization, whereas the latter focused on software
architecture. For this reason, we adopted them as references
to propose the new taxonomy. According to Sulr et al. [26],
a taxonomy is consisted of a number of dimensions (e.g.,
“visualization form") with their attributes (e.g., “2D Ele-
ments",“Color Coding""). Each visual solution from the se-
lected papers from this SMS can pertain to one or more at-
tributes from a specific dimension, as we will describe in the
following paragraphs.

The Category dimension is related to the type of pro-
posed visual solution to support the comprehension of SA
evolution. It is comprised of four attributes: Description,
Technique, Tool and Environment. TheDescription attribute
classifies the solution or its core idea as a main concept or a
technical description of a visual solution. The Technique at-
tribute informs whether the visual solution proposes the use
of a technique, such as specialized procedures or processes.
The Tool attribute means the solution presents or proposes a
tool , or its development, to assist specialized users of soft-
ware architecture to develop, or maintain software systems.
The Environment attribute indicates that the solution explic-
itly presents or proposes an environment, i.e., an integrated
set of tools to help software architecture specialized users in
the development or maintenance of software systems. The
value of this dimension for each solution is mandatory and
it may have more than one attribute signalized.

The Stage dimension has four attributes. The Concep-
tual attribute indicates that the solution is still represented
and referenced as a concept, not having any implementation.
The Project attribute indicates that the solution has been un-
der development as a project. The Prototype attribute means
the solution is a prototype of the solution. Finally, the Sta-
ble Release attribute is related to the status of the solution as
already in production as a stable release. The value of this
dimension is also mandatory and only one attribute can be
signalized for each solution.

The Visualization Form dimension defines the visual
characteristics of the output of the solution [12]. It is char-
acterizes by eight attributes as follows. The 2D Elements
attribute indicates that the solution uses 2D elements, such
as 2D charts, diagrams, shapes, windows, figures and lines.
The 3DVisualization attribute indicates that the solution uses

62

J. Werther et al. / Journal of Visual Language and Computing (2019) 53–68

3D resources for visualization. TheAnimation attributemeans
the solution uses resources of animation in the visual repre-
sentations. The Bigraphs attribute marks the use of bigraphs
in the visual solution. The Visual Metaphor attribute indi-
cates the use of one or more visual metaphors in the visual
representations to enhance the SA evolution understanding.
The Color Coding attribute means the solution adopts a spe-
cific color system to represent the data. The Tree-based at-
tribute is used to characterize solutions that use visual struc-
tures based on trees. TheUML-based indicates that the solu-
tion uses UML diagrams as a form of visual representation.

The Static Representation dimension shows what ar-
chitectural information can be extracted and represented be-
fore run-time [22]. It has two associated attributes: Static Vi-
sualization and Recovery. The Static Visualization attribute
means the solution displays data exclusively related to static
structure of the software system. The Recovery attribute in-
dicates that the solution supports the retrieval of architec-
tural data from specific sources. This dimension may have
no attributes flagged.

The Dynamic Representation dimension shows what
architectural information can be extracted and represented
during run-time [22]. The Dynamic Visualization attribute
means the solution displays data extracted during its execu-
tion (run-time). The Events Monitoring indicates if the so-
lution perform the catch events during its execution. These
events can be identified and associated with SA elements and
thereby support the comprehension of specific scenarios of
software architecture evolution. The Live attribute points out
that the SA data is gathered in a real time fashion as the solu-
tion is executed [12] [22]. The Post-mortem attribute means
the SA data to be gathered is produced in a post-mortem fash-
ion by the solution, i.e., generated by its previous execution
[12] [22]. This dimension may have no attributes flagged.

The Architectural Tasks dimension is related with fea-
tures of the visual solution that support stakeholders to per-
form tasks that to some extent focuses on the software ar-
chitecture and its evolution [22]. It has nine attributes as
follows. The Anomalies attribute indicates that the solution
supports the identification of anomalies, violations and in-
consistencies occurrences related to SA. These occurrences
can also influence the Comprehension attribute indicates the
solution supports visual analysis tasks to improve the com-
prehension of SA and its evolution. Analysis tasks means
tasks that generate results to facilitate the understanding the
SA, its components, dependencies and relationships, as well
as its evolution. They should support top-down or bottom-
up approaches [22]. The Styles attribute indicates that the
solution is able to identify architectural styles and/or verify
its compliance with a predefined reference. The Show Evo-
lution attribute indicates that the solution provides facilities
to exhibit evolution evidence of a SA, in a basic or advanced
way [22]. The Construction attribute indicates that the so-
lution provides resources to add, change or remove SA ele-
ments in the visual representation. The Evaluation attribute
means the solution supports SA quality analysis and also
compliance evaluation. TheComparison attribute points out

that the solution performs visual comparison among releases
of the software system under analysis. A typical use of this
attribute is the comparison between the as-is with the to-be
architectures or the as-designed with as-implemented soft-
ware architecture [22]. The Tracking indicates that the the
solution supports the tracking of SA changes throughout its
releases. This is a key resource to, for example, identify and
trace the architectural decay of a SA, which impairs the soft-
ware lifespan [3]. Finally, the Rationale indicates that the
solution presents andmake available the rationale behind the
design decisions that somehow influences the SA.
5.2. Visual Solutions According to Taxonomy

The Table 11 shows the main characteristics, properties
and features identified in the visual solutions of the selected
papers from the perspective of the proposed taxonomy. These
characteristics were identified and collected exclusively based
on the text provided by the selected studies listed in Table 10.

The column labeled Category indicates different cate-
gories of solutions found in the selected papers, according
the description presented in Subsection 5.1. The column la-
beled Stage means the stage of the solution proposed by the
paper at the time it was published. The column labeled Vi-
sualization Form means the summary description of funda-
mental characteristics related to what can be exhibited in the
visual solution. The content of this column is based on the
Form category proposed by the taxonomy of Price [12]. The
columns labeled Static Representation, Dynamic Represen-
tation, Architectural Tasks are based on keys areas proposed
in Gallagher’s framework [22]. The columnOthers Features
shows complementary purposes, features and characteristics
of the presented visual solution not listed before.

We decided to present a analysis about the visual solu-
tion named EVA to illustrate how the characteristics of the
selected visual solutions presented in Table 11 can be deter-
mined. This analysis is shown in Table 12. The visual solu-
tion EVA was previously presented in the paper S21 [3] and
its justifications come exclusively from this paper’s content.

The Figure 9 presents the overview of current stages for
all visual solutions referenced by Table 11. Its worth re-
membering that current stages means the stage at the time
its study was published. Note that most of solutions (9 in
21) were in “Stable Release" stage, whereas few of them (2
in 21) were in “Project" stage.

The Figure 10 shows the categories of solution found in
selected papers. The “Tool" category has the major prefer-
ence in visual solutions, being present in 14 of 21 solutions
found. The “Description" category is present in only three
solutions.

Figure 11 shows that the tasks Comprehension and Show
Evolution are adopted in all visual solutions from the se-
lected studies. It means that all of them reported the support
of analysis tasks to improve the SA comprehension. More-
over, they also reported the adoption of facilities to exhibit
the SA evolution. These are in fact, minimum requirements
of a visual solutions to support comprehension of SA evolu-
tion. The task Comparison is also representative in the an-

63

J. Werther et al. / Journal of Visual Language and Computing (2019) 53–68

Table 11
Using the Proposed Taxonomy to Classify the Visual Solutions to SA Evolution

Ref.
Paper Name of Visual

Solution
Category Stage Visualization Form Static Representa-

tion
Dynamic Repre-
sentation

Architectural
Tasks

Other Features

S01 Beagle Environment,
Technique

Prototype 2D Elements,
Tree-based

Static Visualiza-
tion, Recovery

N/A Comprehension,
Comparison,
Show Evolution

Evolution metrics
usage

S02 Retrospective
Analysis

Technique Prototype 2D Elements,
Color Coding

Static Visualiza-
tion, Recovery

N/A Comprehension,
Comparison,
Show Evolution,
Evaluation

N/A

S03 Not named Technique Conceptual 2D Elements,
Visual Metaphor

Static Visualiza-
tion

N/A Comprehension,
Construction,
Show Evolution,
Styles

Graph Grammar,
Synchronized
Hyperedge Re-
placement Sys-
tems, Hyperedge
Replacement
Grammar

S04 ABACUS Tool Stable Release 2D Elements,
Tree-based, 3D
Visualization,
Color Coding

Static Visualiza-
tion, Recovery

N/A Comprehension,
Construction,
Show Evolution,
Evaluation

Methodology-
oriented

S05 Not named Description,
Technique

Conceptual 2D Elements,
Bigraph

Static Visualiza-
tion

Dynamic Visual-
ization, Live

Comprehension,
Comparison,
Construction,
Show Evolution,
Styles

BRS resources

S06 Film Strip and
Dependency
Matrix

Technique Prototype 2D Elements Static Visualiza-
tion, Recovery

N/A Comprehension,
Comparison,
Show Evolution

N/A

S07 SAVE Tool, Environ-
ment

Stable Release 2D Elements Static Visualiza-
tion, Recovery

N/A Comprehension,
Anomalies,
Comparison,
Construction,
Show Evolution,
Rationale, Styles,
Evaluation

Process-oriented,
Products com-
parison

S08 SAVE Tool, Environ-
ment

Stable Release 2D Elements Static Visualiza-
tion, Recovery

N/A Comprehension,
Anomalies,
Comparison,
Construction,
Show Evolution,
Rationale, Styles,
Evaluation

Process-oriented,
Products com-
parison

S09 Motive Tool Prototype 2D Elements,
UML-based

Static Visualiza-
tion, Recovery

N/A Comprehension,
Show Evolution

N/A

S10 YARN Tool Prototype 2D Elements,
Color Coding,
Animation

Static Visualiza-
tion, Recovery

N/A Comprehension,
Show Evolution

N/A

S11 GOP Tool, Environ-
ment

Project 2D Elements,
Color Coding

Static Visualiza-
tion, Recovery

N/A Comprehension,
Comparison,
Construction,
Show Evolution,
Tracking

Methodology-
oriented

S12 Evolve Tool Stable Release 2D Elements,
UML-based,
Animation

Static Visualiza-
tion

N/A Comprehension,
Anomalies,
Comparison,
Construction,
Show Evolution

Model-driven,
ADL implemen-
tation

S13 ARAMIS Tool Conceptual N/A Static Visualiza-
tion

Dynamic Visual-
ization, Events
Monitoring

Comprehension,
Show Evolution,
Evaluation

Model-driven

S14 eCITY Tool Stable Release 2D Elements,
Color Coding,
Animation,
Visual Metaphor

Static Visualiza-
tion

N/A Comprehension,
Comparison,
Show Evolution,
Tracking

N/A

S15 ARAMIS Tool, Technique Prototype 2D Elements,
UML-based

N/A Dynamic Visual-
ization, Events
Monitoring, Live,
Post-mortem

Comprehension,
Show Evolution,
Evaluation

Model-driven,
Traceability with
requirements,
Views creation

S16 eCITY Tool Stable Release 2D Elements,
Color Coding,
Animation,
Visual Metaphor

Static Visualiza-
tion

N/A Comprehension,
Comparison,
Show Evolution,
Tracking

N/A

S17 eCITY+ Tool, Technique Stable Release 2D Elements,
3D Visualization,
Color Coding,
Animation,
Visual Metaphor

Static Visualiza-
tion

N/A Comprehension,
Comparison,
Show Evolution,
Tracking

As-plugin

S18 ARAMIS Tool Stable Release 2D Elements,
UML-based

N/A Dynamic Visual-
ization, Events
Monitoring, Live,
Post-mortem

Comprehension,
Show Evolution,
Evaluation

Model-driven,
Traceability with
requirements,
Views creation,
Communica-
tion integrity
validation

S19 Not named Description Project 2D Elements,
UML-based,
Color Coding

Static Visualiza-
tion

N/A Comprehension,
Comparison,
Show Evolution

Model-driven,
Modernization

S20 Not named Technique Conceptual 2D Elements,
UML-based

Static Visualiza-
tion

N/A Comprehension,
Show Evolution

KAMP approach

S21 EVA Tool Stable Release 2D Elements,
3D Visualization,
Color Coding

Static Visualiza-
tion, Recovery

N/A Comprehension,
Comparison,
Show Evolu-
tion, Tracking,
Rationale

ADD traceability

alyzed solutions. They have reported the ability to perform
visual comparison of SA characteristics among two or more
releases of a specific software system, which corresponds
to 62% of analyzed visual solutions. The tasks Anomalies

and Rationale were not representative in the solutions, cor-
responding to only 14% and close to Styles with 19%. The
task Construction explicitly appears in 33% of the visual so-
lutions and half of them present specific resources to design

64

J. Werther et al. / Journal of Visual Language and Computing (2019) 53–68

Table 12
Sample Analysis - Visual Solution EVA [3]

Values Justifications
Category = (“Tool") Title of the paper is “EVA: A

Tool for Visualizing Software
Architectural Evolution".

Stage = (“Stable Released") The behavior of EVA pre-
sented in the paper always
suggests that it is in pro-
duction; EVA was already
evaluated in use and is in the
process of deploying to a large
development organization.

Visualization Form = (“2D El-
ements", “3D Visualization",
“Color Coding")

“2D Elements": suggested by
figures displayed in the pa-
per; “3D Visualization": EVA
provides a view that shows
architectures of multiple re-
leases in a 3D visualization;
“Color Coding": EVA differs
code-level entities through
color coding.

Static Representation =
(“Static Visualization", “Re-
covery")

“Static Visualization": EVA
only collects data at compile-
time (static elements); “Re-
covery": EVA supports many
SA recovery techniques.

Dynamic Representation =
N/A

The paper does not present
any characteristic or feature
for dynamic representation.

Architectural Tasks = (“Com-
prehension", “Comparison",
“Show Evolution", “Tracking",
“Rationale")

“Comprehension": EVA pro-
vides a view that represents
a single SA release, allowing
users to interactively under-
stand the functionality of
each architecture component;
“Comparison": EVA provides
comparison view that shows
the SA diïňĂerences between
two releases; “Show Evolu-
tion": EVA visualizes the SA
evolution through a set of
source codes across multiple
releases; “Tracking": EVA
provides a view that allows
representation of change
tracking of entities across
multiple releases; “Rationale":
EVA collects relevant data of
design decisions from system
repositories, displaying them
together with the architecture
evolution visualization.

Other Features = (“ADD
Traceability")

EVA shows the traceability of
architecture design decisions
over time

the architecture, such as S02 solution [34] (using Bigraphi-
cal Reactive System) and S06 solution [40] (using an ADL
visual modelling component). The task Evaluation also ap-
pears with 33%.

6. Discussion
The specific research question SRQ1 is related to the

main visual solutions to support the software architecture
evolution comprehension. The answer is presented in Ta-
ble 11, where it is possible to identify their main goals and
characteristics of each solution. The specific research ques-
tion SRQ2 is concerned to different purposes of using the
visual solutions to support the software architecture evolu-
tion comprehension. The purposes are also presented in Ta-
ble 11, identified primarily in the Architectural Tasks col-

Figure 9: Current Stages of Visual Solutions

Figure 10: Categories of Visual Solutions

umn and also in the Static Representation, Dynamic Rep-
resentation and Other Features columns. The specific re-
search question SRQ3 focuses on solutions designed to visu-
ally support comprehension of software architecture evolu-
tion can be classified. The solutions can be classified in the
categories Description, Technique, Tool and Environment.
The Table 11 classify each solution and shows that the Tool
category has more representants among the selected stud-
ies. The specific research question SRQ4 focuses on visual
forms used to support comprehension of software architec-
ture evolution. The Table 11 lists in the Visualization Form
column how the visual forms have been adopted in the visual
solutions discussed in the selected studies. From the list, it
is possible to identify the following distribution of use of the
visual forms: 2D Elements (20 studies), Tree-based (2 stud-
ies), Color coding (9 studies), Visual metaphor (4 studies),
3D Visualization (3 studies), Bigraph (1 study), Uml-based
(5 studies) and Animation (5 studies).

Finally, the main research question (RQ) focuses on the
evaluation of the usage of visual solutions to support the
comprehension of software architecture evolution based on
papers published in the peer-reviewed literature. Table 11
presents an up-to-date overview of solutions used for the
stated purpose with different characteristics and strategies
as has been already explained for the specific research ques-
tions. We have identified that based on evidence from the se-
lected studies, features of comprehension and SA evolution
visualization are minimum requirements to support software
architecture evolution comprehension, as shown in Figure
11. On the other hand, the low number of papers found in

65

J. Werther et al. / Journal of Visual Language and Computing (2019) 53–68

Figure 11: Distribution of Architectural Tasks in the Selected Papers

this systematic mapping study, suggests that visual solutions
to support SA evolution comprehension is an area that needs
expand in terms of studies and options available for practi-
tioners and researchers.

7. Conclusion
The aim of this work is to report the design, execution

and results of a systematic mapping study of visual solu-
tions to support the comprehension of software architecture
evolution. We performed a SMS according to the plan de-
scribed in Section 4. Initially, the applied search strings re-
trieved 211 papers from the selected electronic databases.
This number was reduced to 21 after applying all selection
procedures criteria. From these 21 selected studies, the iden-
tified visual solutions to support the comprehension of SA
evolution were classified as follows: 14% categorized asDe-
scription, 38% as Technique, 67% as Tool and 19% as Envi-
ronment. All of them support the architectural tasks Com-
prehension and Show Evolution.

Besides the identification of visual solutions from the lit-
erature, another contribution of this study is a taxonomy to
classify these solutions. The taxonomy contains six dimen-
sions: category, stage, visualization form, static representa-
tion, dynamic representation and architectural tasks. These
dimensions and their attributes was explained in Section 5,
SubSection 5.1. Each visual solution was classified accord-
ing to this taxonomy, generating a table of characterization
of visual solutions to SA evolution, presented in Table 11.
The assignment of the taxonomy attributes value to the vi-
sual solution characteristics shows a current overview of the
available visual solutions in peer-reviewed literature.

Moreover, this study also shows that visual solutions to
support SA evolution comprehension usually present fea-
tures to support analysis tasks to improve the SA comprehen-
sion and also provide facilities to exhibit the SA evolution.

This study also concludes that, due to a few number of papers
found in this SMS, the studies may consider to allocate more
research and development effort to provide effective visual
solutions to support SA evolution comprehension, improv-
ing the acquired knowledge in this area.

As a future work, we recommend extending the research
to establish a methodology or process, based on the taxon-
omy proposed, to define projects to build visual solutions of
SA evolution comprehension. Another possibility for future
work is the improvement of the proposed taxonomy, aiming
to generate a new framework to objectively evaluate solu-
tions like that ones discussed in this SMS.

References
[1] H. P. Breivold, I. Crnkovic, M. Larsson, A systematic review of soft-

ware architecture evolution research, Information and Software Tech-
nology 54 (2012) 16 – 40.

[2] L. Yu, S. Ramaswamy, J. Bush, Symbiosis and software evolvability,
IT Professional 10 (2008) 56–62.

[3] D. Nam, Y. K. Lee, N. Medvidovic, Eva: A tool for visualizing
software architectural evolution, in: 2018 IEEE/ACM 40th Inter-
national Conference on Software Engineering: Companion (ICSE-
Companion), 2018, pp. 53–56.

[4] Q. Tu, M. W. Godfrey, An integrated approach for studying archi-
tectural evolution, in: Proceedings 10th International Workshop on
Program Comprehension, 2002, pp. 127–136.

[5] M. Lungu, M. Lanza, Exploring inter-module relationships in evolv-
ing software systems, in: 11th European Conference on Software
Maintenance and Reengineering (CSMR’07), 2007, pp. 91–102.

[6] R. Taylor, N. Medvidovic, E. Dashofy, Software Architecture: Foun-
dations, Theory and Practice, Hoboken, New Jersey, 2009.

[7] D. Garlan, J. M. Barnes, B. Schmerl, O. Celiku, Evolution styles:
Foundations and tool support for software architecture evolution, in:
2009 Joint Working IEEE/IFIP Conference on Software Architecture
European Conference on Software Architecture, 2009, pp. 131–140.

[8] M. Shahin, P. Liang, M. A. Babar, A systematic review of software ar-
chitecture visualization techniques, Journal of Systems and Software
94 (2014) 161 – 185.

[9] M. Shahin, P. Liang, M. R. Khayyambashi, Improving understand-

66

J. Werther et al. / Journal of Visual Language and Computing (2019) 53–68

ability of architecture design through visualization of architectural
design decision, in: Proceedings of the 2010 ICSE Workshop on
Sharing and Reusing Architectural Knowledge, SHARK ’10, 2010,
pp. 88–95.

[10] R. L. Novais, M. G. de Mendonca Neto, Computer Systems and Soft-
ware Engineering: Concepts, Methodologies, Tools, and Applica-
tions, Chapter: Software Evolution Visualization: Status, Challenges,
and Research Directions, IGI Global, 2018.

[11] Y. Ghanam, S. Carpendale, A survey paper on software architecture
visualization Technical report (2008).

[12] B. A. Price, R. M. Baecker, I. S. Small, A principled taxonomy of
software visualization, Journal of Visual Languages Computing 4
(1993) 211 – 266.

[13] J. Werther, G. Carneiro, R. Maciel, A systematic mapping on visual
solutions to support the comprehension of software architecture evo-
lution, in: Proceedings of the 25th International DMS Conference
on Visualization and Visual Languages, DMSVIVA ’19, 2019, pp.
63–74. doi:10.18293/DMSVIVA2019-008.

[14] D. Garlan, D. E. Perry, Introduction to the special issue on software
architecture, IEEE Transactions on Software Engineering 21 (1995)
269–274.

[15] D. Garlan, Software architecture: A travelogue, in: Proceedings of
the on Future of Software Engineering, FOSE 2014, 2014, pp. 29–39.

[16] D. Garlan, Software architecture: a roadmap, in: Proceedings of
Conference on the Future of Software Engineering, Limerick, Ireland,
2000, pp. 91–101.

[17] N. Medvidovic, R. Taylor, D. Rosenblum, An architecture-based ap-
proach to software evolution, in: Proceedings of International Work-
shop on the Principles of Software Evolution, 1998.

[18] L. A. Belady, M.M. Lehman, Amodel of large program development,
IBM Systems journal 15 (1976) 225–252.

[19] C. F. Kemerer, S. Slaughter, An empirical approach to studying
software evolution, IEEE Transactions on Software Engineering 25
(1999) 493–509.

[20] D. Rowe, J. Leaney, D. Lowe, Defining systems evolvability - a
taxonomy of change, in: Proceedings of International Conference
andWorkshops on Engineering of Computer-Based Systems (ECBS),
1998, Jerusalem, Israel, 1998.

[21] E. Gamma, et al., Design patterns: elements of reusable object-
oriented software, Addison-Wesley, 1995.

[22] K. Gallagher, A. Hatch, M. Munro, Software architecture visualiza-
tion: An evaluation framework and its application, IEEE Transactions
on Software Engineering 34 (2008) 260–270.

[23] J. Cleland-Huang, R. S. Hanmer, S. Supakkul, M. Mirakhorli, The
twin peaks of requirements and architecture, IEEESoftware 30 (2013)
24–29.

[24] V. Basili, G. Caldiera, H. Rombach, The goal question metric
paradigm, Encyclopedia of Software Engineering 2 (1994) 528–532.

[25] A. Telea, L. Voinea, H. Sassenburg, Visual tools for software archi-
tecture understanding: A stakeholder perspective, IEEE Software 27
(2010) 46–53.

[26] M. Sulir, M. Bacikova, S. Chodarev, J. Poruban, Visual augmentation
of source code editors: A systematic mapping study, Journal of Visual
Languages Computing 49 (2018) 46 – 59.

[27] C.Wohlin, et al., Experimentation in Software Engineering, Springer-
Verlag, 2012.

[28] V. R. Basili, H. D. Rombach, The tame project: towards
improvement-oriented software environments, IEEE Transactions on
Software Engineering 14 (1988) 758–773.

[29] T. Dyba, T. Dingsoyr, Empirical studies of agile software develop-
ment: A systematic review, Information and Software Technology 50
(2008) 833 – 859.

[30] D. Moher, A. Liberati, J. Tetzlaff, D. G. Altman, P. Group, et al., Pre-
ferred reporting items for systematic reviews and meta-analyses: the
prisma statement, PLoS medicine 6 (2009) e1000097.

[31] M. Jazayeri, On architectural stability and evolution, in: J. Blieberger,
A. Strohmeier (Eds.), Reliable Software Technologies—Ada-Europe
2002, Springer Berlin Heidelberg, Berlin, Heidelberg, 2002, pp. 13–

23.
[32] D. Hirsch, U.Montanari, Two graph-based techniques for software ar-

chitecture reconfiguration, Electronic Notes in Theoretical Computer
Science 51 (2002) 177–190.

[33] K. Dunsire, T. O’Neill, M. Denford, J. Leaney, The abacus archi-
tectural approach to computer-based system and enterprise evolution,
in: 12th IEEE International Conference and Workshops on the En-
gineering of Computer-Based Systems (ECBS’05), 2005, pp. 62–69.
doi:10.1109/ECBS.2005.66.

[34] Z. Chang, X. Mao, Z. Qi, An approach based on bigraphical reactive
systems to check architectural instance conforming to its style, in:
First Joint IEEE/IFIP Symposium on Theoretical Aspects of Software
Engineering (TASE ’07), 2007, pp. 57–66.

[35] W. C. Stratton, D. E. Sibol, M. Lindvall, P. Costa, Technology infu-
sion of save into the ground software development process for nasa
missions at jhu/apl, in: 2007 IEEE Aerospace Conference, 2007, pp.
1–15. doi:10.1109/AERO.2007.352763.

[36] W. C. Stratton, D. E. Sibol, M. Lindvall, P. Costa, The save tool
and process applied to ground software development at jhu/apl: An
experience report on technology infusion, in: 31st IEEE Software
Engineering Workshop (SEW 2007), 2007, pp. 187–193.

[37] A. McNair, D. M. German, J. Weber-Jahnke, Visualizing software ar-
chitecture evolution using change-sets, in: 14th Working Conference
on Reverse Engineering (WCRE 2007), IEEE, 2007, pp. 130–139.

[38] A. Hindle, Z. M. Jiang, W. Koleilat, M. W. Godfrey, R. C. Holt, Yarn:
Animating software evolution, in: 2007 4th IEEE InternationalWork-
shop on Visualizing Software for Understanding and Analysis, IEEE,
2007, pp. 129–136.

[39] L. Schrettner, P. Hegedus, R. Ferenc, L. J. Fulop, T. Bakota, Devel-
opment of a methodology, software – suite and service for supporting
software architecture reconstruction, in: 2010 14th European Con-
ference on Software Maintenance and Reengineering, 2010, pp. 190–
193.

[40] A. McVeigh, J. Kramer, J. Magee, Evolve: Tool support for architec-
ture evolution, in: Proceedings of the 33rd International Conference
on Software Engineering, ICSE ’11, 2011, pp. 1040–1042.

[41] A. Dragomir, H. Lichter, Model-based software architecture evolu-
tion and evaluation, in: 2012 19th Asia-Pacific Software Engineering
Conference, volume 1, 2012, pp. 697–700.

[42] T. Khan, H. Barthel, A. Ebert, P. Liggesmeyer, ecity: A tool to track
software structural changes using an evolving city, in: 2013 IEEE
International Conference on Software Maintenance, 2013, pp. 492–
495. doi:10.1109/ICSM.2013.80.

[43] A. Dragomir, H. Lichter, Run-time monitoring and real-time visual-
ization of software architectures, in: 2013 20th Asia-Pacific Software
Engineering Conference (APSEC), volume 1, 2013, pp. 396–403.

[44] T. Khan, H. Barthel, L. Guzman, A. Ebert, P. Liggesmeyer, ecity:
Evolutionary software architecture visualization–an evaluation, in:
Building Bridges: HCI, Visualization, and Non-formal Modeling,
Springer, 2014, pp. 201–224.

[45] T. Khan, S. R. Humayoun, K. Amrhein, H. Barthel, A. Ebert,
P. Liggesmeyer, ecity+: A tool to analyze software architectural rela-
tions through interactive visual support, in: Proceedings of the 2014
European Conference on Software Architecture Workshops, ECSAW
’14, 2014, pp. 36:1–36:4.

[46] A. Nicolaescu, H. Lichter, A. Göringer, P. Alexander, D. Le, The
aramis workbench for monitoring, analysis and visualization of archi-
tectures based on run-time interactions, in: Proceedings of the 2015
European Conference on Software Architecture Workshops, ACM,
2015, p. 57.

[47] D. Escobar, D. CÃąrdenas, R. Amarillo, E. Castro, K. GarcÃľs,
C. Parra, R. Casallas, Towards the understanding and evolution of
monolithic applications as microservices, in: 2016 XLII Latin Amer-
ican Computing Conference (CLEI), 2016, pp. 1–11.

[48] D. Faitelson, R. Heinrich, S. S. Tyszberowicz, Supporting software
architecture evolution by functional decomposition., in: MODEL-
SWARD, 2017, pp. 435–442.

[49] D. Faitelson, S. Tyszberowicz, Improving design decomposition, in:

67

http://dx.doi.org/10.18293/DMSVIVA2019-008
http://dx.doi.org/10.1109/ECBS.2005.66
http://dx.doi.org/10.1109/AERO.2007.352763
http://dx.doi.org/10.1109/ICSM.2013.80

J. Werther et al. / Journal of Visual Language and Computing (2019) 53–68

International Symposium onDependable Software Engineering: The-
ories, Tools, and Applications, Springer, 2015, pp. 185–200.

[50] K. Rostami, J. Stammel, R. Heinrich, R. Reussner, Architecture-based
assessment and planning of change requests, in: Proceedings of the
11th International ACM SIGSOFT Conference on Quality of Soft-
ware Architectures, ACM, 2015, pp. 21–30.

68

Journal of

Visual Language and

Computing

Volume 2019, Number 1

	Blank Page
	Blank Page
	JVLC2019N1v2.pdf
	Blank Page
	Blank Page
	Blank Page

	Blank Page
	Blank Page
	Blank Page

