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Guest Editor Introduction to the

VLSS Special Issue on Blocks Programming
Franklyn Turbak

Computer Science Department
Wellesley College, Wellesley MA, USA

fturbak@wellesley.edu

This special issue of the Journal of Visual Languages and
Sentient Systems (VLSS) focuses on Blocks Programming.
Over the past twenty years, blocks programming languages
have evolved from research lab prototypes to practical tools
used by tens of millions of people. The core idea behind these
languages is simple: rather than constructing programs out of
sequence of characters that are lexed into tokens that are parsed
into syntax trees, why not construct syntax trees more directly
by composing drag-and-drop visual fragments that represent
the nodes of the trees?

There are now a host of blocks languages that can be used
for a wide variety of purposes, such as creating games, script-
ing 3D animations, inventing mobile apps, developing agent-
based simulations, controlling robots, generating 3D models.
and collecting/analyzing/visualizing scientific data.

Educators have seized upon blocks languages as a way to
introduce beginners to computer science concepts. Environ-
ments like Scratch, Blockly, Pencil Code, App Inventor, Snap!,
AgentSheets/AgentCubes, and Alice/Looking Glass have be-
come popular ways to introduce students (from grade school-
ers through graduate students) to computational thinking and
programming. This is done not only in traditional classrooms,
but also in extracurricular settings via online activities like
Code.org’s Hour of Code.

But blocks environments are also a boon to a broader
population whose primary goal is to “make stuff” rather
than learn computer science principles. This includes artists,
scientists, hobbyists, entrepreneurs, and other end users and so-
called casual programmers who want to build computational
artifacts for themselves, their families, their workplaces, their
communities, and the world at large.

There are many questions surrounding blocks languages.
Why are they so popular? What are their key advantages and
limitations compared to other programming environments? Do
they really lower barriers to programming, or is that just hype?
In what ways do they help and hinder those who use them
as a stepping stone to traditional text-based languages? What
are effective pedagogical strategies to use with blocks lan-
guages, both in traditional classroom settings and in informal
and open-ended learning environments? How does the two-
dimensional nature of blocks programming workspaces affect
the way people create, modify, navigate, and search through
their code? Do blocks environments have any features that

are worth incorporating into IDEs for traditional programming
environments? What are effective mechanisms for multiple
people to collaborate on a single blocks program when they
are co-located or are working together remotely? Can blocks-
based environments be made accessible to users with visual
or motor impairments?

These questions are being investigated by educators, soft-
ware developers, and researchers from areas that include
visual languages, human-computer interaction, programming
languages, education, psychology, learning science, and data
analytics. This special issue gives a sample of the kinds of
research and development that is taking place in the blocks
programming community.

Many blocks languages are domain-specific languages
(DSLs) that are not general programming systems but are in-
stead targeted at tasks in a particular domain. An excellent ex-
ample of such a DSL is SparqlBlocks, a blocks-based environ-
ment for making queries to find information encoded in linked
data within the semantic web. This system is described by its
creators, Miguel Ceriani and Paolo Bottoni, in the first article
of this issue, SparqlBlocks: Using Blocks to Design Structured
Linked Data Queries. The SparqlBlocks programming environ-
ment highlights several key advantages that blocks languages
have with respect to traditional textual notations (in this case,
the text-based SPARQL query language). First, SparqlBlocks
language features are represented by drag-and-drop blocks
whose shapes both suggest how they can be composed and
only allow syntactically valid connections to be made. Second,
generating and editing queries involves manipulating high-
level chunks of information (blocks) as opposed to low-level
character representations, which not only aids the cognitive
task of assembling queries but also avoids frustrating errors
due to misspelled keywords or incorrect punctuation. Third,
the blocks of the language are organized into categories within
a toolbox menu, allowing users to learn available functionality
by exploring the menu options and use recognition rather than
recall to find the constructs that that they need. Fourth, the
system has a liveness property such that query results are
automatically displayed as soon as a valid query is created and
updated as soon as the query is modified. (Although liveness
has nothing to do with blocks per se, it is a common feature
of many blocks environments.)
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In addition to these standard benefits, SparqlBlocks has an
innovative twist: the query result tables themselves are repre-
sented as blocks, which encourages the use of result fragments
in new queries. Anyone who has programmed using JSON data
representations or Lisp-like s-expressions will appreciate the
power unleashed by having output data representations that
can easily be repurposed as input data within a program.

SparqlBlocks is clearly not a language targeted at children,
but at people who understand the Resource Description Frame-
work (RDF) framework of the semantic web. So it serves
as an interesting case study for those who are dismissive
about blocks languages, and claim they can’t be used for
“real” coding or are just a stepping stone for programming
in traditional text-based languages. In this case, it’s easy to
imagine a class of users who would be completely satisfied
with using SparqlBlocks for all their semantic web queries
without ever feeling the need to learn the textual SPARQL
syntax. Perhaps the naysayers are confused by the brightly
colored blocks and the fact that many current blocks languages
have limited environments that are targeted at those who have
never programmed before, and so they incorrectly conclude
that such environments are only good for kids and other
newbies and could never be of use to adults or seasoned
programmers. But fundamentally, blocks languages are just an
alternative way of representing the syntax trees that underly
any program, so there’s no reason that they can’t express
everything that a traditional text-based language can express.
And it’s worth remembering that it was not so long ago that
“real programming” was done only in assembly code and
higher-level programming languages were such a futuristic
idea that their study was considered a branch of artificial
intelligence. It will be interesting to see what is considered
“real programming” twenty to forty years hence.

This is not to say that blocks languages don’t have down-
sides. Common complaints are that blocks representations are
are less dense than text representations (so less information can
be conveyed in one screenful) and that they have high viscosity
— creating, moving, connecting, disconnecting, copying, and
deleting blocks when editing a program can take more opera-
tions and time than entering and editing text. And syntactically
correct programs aren’t necessarily semantically meaningful.
For example, in SparqlBlocks, many users struggle with the
correct usage of literals and variables in their queries.

An important line of research in blocks based languages
is mitigating these downsides. The next three articles in this
special issue address this theme.

One idea for combining the benefits of blocks and text
within a single environment is bidirectional mode switching,
in which there is a way to convert a blocks program workspace
into an editor buffer with an isomorphic text program and vice
versa. There are now several blocks programming environ-
ments that support bidirectional mode switching, but one of the
earliest was Tiled Grace, which is described by its developers
Michael Homer and James Noble in their article Lessons
in Combining Block-based and Textual Programming. Tiled

Grace is a blocks version of the existing Grace text-based lan-
guage. Users can edit a Tiled Grace program either in blocks
mode or text mode and, with the press of a button, see their
program transformed by a smooth animation into the other
mode. Each mode has its own advantages. Blocks mode al-
lows editing the program syntax tree with meaningful chunks,
provides a toolbox that organizes the language constructs into
inspectable categories, and provides visual feedback for syntax
errors and program dependencies (e.g., associating references
of variable and method names with their declarations). Text
mode allows low-viscosity editing of a denser representation
of the same program.

The article describes an experiment in which early under-
graduate Java programmers were asked to write, modify, cor-
rect, and describe Tiled Grace programs, and were allowed to
switch between blocks mode and text mode as many times as
they wanted to in order to complete their tasks. One interesting
result is that participants switched modes numerous times in
performing the tasks. Many participants (who were already
used to text-based programming in Java) found drag-and-drop
editing with blocks frustrating, so would switch to text mode
to edit the programs. But some participants would switch to
blocks mode to perform certain kinds of edits. Intriguingly,
over a third of switches to blocks mode involved no edits,
implying that participants were using it just to examine the
structure of the code.

The authors compare their study to some other studies
involving bidirectional mode switching. These other studies in-
volved different environments, different tasks, and participants
with different programming backgrounds, so it’s not surprising
that there is a lot of variability between results. But clearly,
bidrectional mode switching is a rich area for future study.
and can give insight into the relative advantages of blocks
vs. text for creating, modifying, debugging, and understanding
programs.

A different approach to mediating between blocks and text
is described in the Frame-Based Editing article by Michael
Kölling, Neil C. C. Brown, and Amjad Altadmri. They
describe a novel editing paradigm based on frames that is the
basis for an editor for the Java-like Stride language that has
been incorporated into their Greenfoot and BlueJ programming
environments. Rather than switching between blocks and text
views, the frame-based editor combines key aspects of both
blocks and text in a single unified view.

Declarations and statements are represented as frames,
which are visual block-like entities that can be created, moved,
copied, and deleted as single syntactic units. Frames have slots
for nested program structure. There are two types of slots.
A frame slot is filled with another frame, while a text slot
is filled by typing characters on the keyboard (or copying
and pasting text from elsewhere). Text slots are used for
entering expressions (e.g., numbers, variables references, arith-
metic/relational/logical operations, etc.) and specifying things
like parameter names, types, and the assigned variable in an
assignment statement. Although frames and frame/slot cursors
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can be selected/dragged/positioned with a mouse, there are
keystrokes for creating, selecting, copying, pasting, and delet-
ing frames and for navigating to frames and slots. This makes
it possible to edit Stride programs using only keystrokes, even
though frames are block-like features.

The Stride frame-based editor supports numerous other fea-
tures that give it a low-viscosity “feel” more like a professional
text-based Integrated Development Environment (IDE) than
a high-viscosity visual language. The article describes a few
usability experiments with the Stride editor, some of which
are positive but others of which indicate areas for improve-
ment. More detailed experiments with frame-based editing
and comparing it with editing in other blocks based environ-
ments are obvious areas for future work, as are incorporating
frame-based features into other blocks-based environments and
adapting frame-based editors to other text-based languages.

This article also describes how frame-based and blocks-
based editing arose out of two research threads: one involving
structure editors for text-based programs, and another involv-
ing visual programming languages. Members of the blocks
community should familiarize themselves with both of these
lines of research.

Alex Repenning’s article Moving Beyond Syntax: Lessons
from 20 Years of Blocks Programming in AgentSheets is his
personal reflection about the history and future of blocks
programming. Repenning’s 1995 AgentSheets environment for
rule-based programming of agents in a two-dimensional grid
included a blocks programming editor for specifying the rules
that control the agents. Repenning defines four affordances
for blocks programming that he uses as a lens to discuss the
history of blocks programming and related work in visual pro-
gramming. Readers interested in the historical underpinnings
of blocks programming should follow up on the work cited by
Repenning as well as the structure editor work summarized by
Kölling, Brown, and Altadmri.

The main thrust of Repenning’s article is that although
blocks languages have clear benefits for making the syntax
of programming less frustrating for beginners, developers of
these environments should focus more on improving their
semantics and pragmatics (which he defines as the study of
what code means in particular situations). He gives some
compelling examples from AgentSheets and the follow-on
AgentCubes languages: automatically generated context-based
documentation and error messages, and so-called conversa-
tional programming and live palette techniques that support
context-based debugging and prediction of program behavior
— e.g., dynamically showing the values of rule conditions and
which rules would fire as agents are dragged through different
cells in a grid world. Such feedback can give programmers
a better understanding of the behavior of their programs, not
just their structure.

Repenning also argues that environments for beginners need
to focus less on traditional programming skills and more on
computational thinking and problem-solving skills. In this con-
text, there are advantages to having restricted computational

thinking environments that are tuned to having relatively sim-
ple solutions to certain classes of problems rather than general
programming tools that can solve any problem. Repenning
notes that solutions with general programming tools are often
swamped by accidental complexity, whereas in more con-
strained environments, it is easier to support pragmatics. Many
of the semantic, pragmatic, and computational thinking bene-
fits mentioned by Repenning are strongly rooted in the particu-
lar grid-with-agents-controlled-by-rules paradigm embodied in
his AgentSheets and AgentCubes environments. But how can
these sorts of benefits be realized in other paradigms, domains,
and modalities? This is a rich area for future research. As a
concrete challenge to the reader, I suggest considering how to
apply some of Repenning’s ideas to Ceriani and Bottoni’s
SparqlBlocks system, or some other blocks language of their
choice.

Although Repenning defines four key affordances of blocks
programming, he doesn’t explore in detail why those affor-
dances should help blocks programmers. In their article How
Block-based Languages Support Novices, David Weintrop
and Uri Wilensky propose a framework for understanding
how such affordances help learners construct meaning from
the environment in the context of solving a particular prob-
lem. They use a notion of webbing to describe all resources
available to the learner in a situated computational problem
solving task. Their framework involves two dimensions: the
first dimension distinguishes internal cognitive processes vs.
external communication; the second dimension distinguishes
generating a program vs. interpreting one. Based on the 2 x 2
matrix involving these dimensions, they describe four roles for
the learner. They then give examples from a study involving
RoboBuilder (a blocks-based environment for describing the
behavior of screen-based robots that battle each other) of
how affordances of blocks help learners in each of the four
roles. An interesting aspect of their analysis is it suggests
that designers should consider all four roles when designing a
blocks language. However, there may be trade-offs in design
that benefit one role at the expense of another. Elaborating on
design decisions and trade-offs implied by this framework, as
well as applying it to non-blocks programming languages, are
avenues for future research.

Blocks programming environments are used in many situa-
tions where novice programmers make heavy use of example
programs to learn features of the language, often with little or
no help from an instructor or peer. In order to design helpful
examples and incorporate them into the learning process, it
is essential to better understand how blocks programmers
learn via examples. This is the motivation behind the work
by Michelle Ichinco, Kyle Harms, and Caitlin Kelleher in
their article Towards Understanding Successful Novice Exam-
ple Use in Blocks-based Programming. They investigated two
features of examples in Looking Glass: (1) different styles
of annotations that explain how an example works and (2)
surface and structural similarities between and example and
the assigned task (which involved modifying a given program).
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In a study of 99 children aged 10 to 15, they found that an-
notations on examples (vs. no annotations) helped participants
complete a similar task, but not a dissimilar one. Also, subjects
completed more tasks using similar examples than dissimilar
ones, and the similarity was correlated with getting to a later
stage in a 4-stage model of task completion. However, the tasks
were challenging for the subjects, and many subjects did not
get past the 1st of the 4 stages for many of the tasks. More
work clearly needs to be done to help novices get unwedged
from this 1st stage.

To understand the level of understanding that subjects had of
the relationship between the examples and tasks, subjects were
asked to draw analogical mappings that connected parts of the
example program to corresponding parts of the (unmodified)
task program. The study found strong correlations between
annotations and correct mappings and between example sim-
ilarity and correct mappings, but only a weak correlation
between correct mappings and task success.

Finally the study looked at how programming behavior
was correlated with task completion. For example, editing the
program in the 1st stage or performing many user interface
operations in the 2nd stage were strong indicators that subjects
would not complete the task.

This study indicates that example-based learning in blocks
programming may not be particularly effective. It remains
to be seen whether more carefully crafted examples with
more explicit analogical mappings, possibly enhanced with
other forms of scaffolding, can increase the effectiveness of
examples.

The special issue concludes with the topic of accessibility of
blocks programming environments. Many people naturally as-
sume that the visual, drag-and-drop nature of blocks languages
inherently makes them inaccessible to those with visual or
motor impairments. But this is not necessarily the case! The
fact that blocks programming reifies syntax tree nodes and
focuses on creating, modifying, and navigating syntax trees
may be able to support programming for those with disabilities
better than character-based languages.

In their research notes paper Design Considerations to
Increase Block-based Language Accessibility For Blind Pro-
grammers Via Blockly, Stephanie Ludi and Mary Spencer

describe their work-in-progress on extending the Blockly
browser-based blocks language framework to support visually
impaired users. One aspect of their work is extending Blockly
with screen reader support so that it can pronounce block as-
semblies (including unfilled sockets) in a meaningful way. An-
other is providing keyboard support for navigating, connecting,
disconnecting, etc. blocks and using menus on the workspace.
(As discussed in Sec 14.5 of Kölling, Brown, and Altadmri’s
article, the fact that their frame-based Stride editor already has
complete keyboard support for all editing operations makes it
an interesting candidate for accessibility.) They also reference
work on vocal interfaces that can make blocks programming
accessible to people with motor impairments.

In the spirit of promoting accessibility, all researcher who
develop and study blocks environments are encouraged to
become familiar with ways of making these environments
more accessible.

Many individuals contributed to this special issue. I am
grateful Professor S-K. Chang, the Editor-in-Chief of VLSS,
for his support and encouragement for this special issue. Many
thanks to the authors who responded to the call for papers
for this issue. Of the nine papers that were submitted, six
were accepted as full papers (subject to revisions) and one
was accepted as a research notes paper. I especially appreciate
the willingness of the authors of the accepted papers to go
through three rounds of revisions on their papers (two based
on reviewer feedback and a final one based on my feedback),
which led to very high-quality results. Finally, I am indebted
to our reviewers, whose constructive comments during two
rounds of reviews greatly improved the quality of the papers.

Preparing this special issue has been a rewarding experience.
It has underscored how much exciting work is going on in
the area of blocks programming and exposed fertile ground
for future research, both in terms of studying how people
use and learn from blocks environments and improving the
environments to address numerous problems that have been
identified in existing systems.

There is a vibrant community of researchers conducting
work on blocks programming. Join us!
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SparqlBlocks: Using Blocks to Design
Structured Linked Data Queries

Miguel Ceriani1,2 and Paolo Bottoni1
1Sapienza, University of Rome, Italy

2Instituto Tecnológico de Buenos Aires, Argentina
{ceriani,bottoni}@di.uniroma1.it

Abstract While many Linked Data sources are available, the task of
building structured queries on them is still a challenging one for
users who are not conversant in the specialised query languages
required for their effective use. A key hindering factor is the lack of
intuitive user interfaces for these languages. The block programming
paradigm is becoming popular for the development of visual inter-
faces that are easy to use and guaranteed to generate syntactically
correct programs, promoting a gradual and modular approach to the
task of programming. We exploit these features of the block paradigm
to develop SparqlBlocks, a visual language and an integrated user
interface in which both Linked Data queries and results are repre-
sented as blocks, supporting a modular and exploratory approach to
query design. By integrating the presentation of queries and results,
reuse of results in the refinement of queries is promoted, as well as
the exploration of both the data and the structure of Linked Data
sources. SparqlBlocks has been evaluated with 11 users literate in
computer science but with small to no expertise in querying Linked
Data. After a tutorial, all the users were able to build at least a
simple query and all but two were able to build nontrivial queries.

1. Introduction
Linked Data [1] — the structured data available online —

are increasing both in quantity and diversity [2]. A key advan-
tage of the Linked Data model is its support for serendipitous
exploration and reuse of existing data. In practice, though,
exploring and querying Linked Data is not trivial and requires
knowledge of RDF [3] (the basic data model), SPARQL [4]
(the standard query language), and a number of schemas and
ontologies (the domain/dataset specific data models).

Existing experimental tools for non-experts (see for exam-
ple [5, 6]), while being effective for some cases, do not support
the user much in an incremental process of query design, as
reusing intermediate queries and results for new queries is not
easy.

As block programming languages [7, 8] — in which coding
occurs by dragging and connecting fragments shaped like
jigsaw puzzle pieces — have been successfully adopted to
introduce programming to non-experts, we decided to lever-
age the block programming paradigm to design Linked Data
queries, supporting an exploratory approach to query design in

DOI reference number: 10.18293/VLSS2017-011

which language affordances are visually exposed and syntax
errors are avoided. Hence, users are not required to know in
advance the details of RDF and SPARQL, while the flexibility
and expressiveness of a complex query language are preserved.

A specific challenge in querying Linked Data is supporting
their heterogeneous nature: no expert can achieve perfect
knowledge of the structure and semantics of all the data they
may need to use from multiple sources; systems should thus
help in discovering structure and semantics of data sources. To
deal with this, we build on the block programming approach,
presenting a novel paradigm for interactive queries in which
both the queries and their results are integrated and interoper-
able in the workspace. Results are available as blocks that can
be used as part of existing queries (to refine them) or to build
new (follow-up) queries. Queries are dynamically executed as
they are built or modified. As a result, the supporting environ-
ment fosters an exploratory approach such that users may start
querying datasets without knowing their specific organization
and gather progressively more detailed information.

The described approach has been implemented in Sparql-
Blocks1 [9, 10], a visual language and an associated visual
environment for designing and executing queries on Linked
Data sources. The target user of the system is anyone interested
in building queries beyond simple data browsing, on one or
multiple datasets. The tool may also work as an educational
aid for learning Linked Data technologies.

In this paper, we describe in detail the language and user
interface of SparqlBlocks and report on a controlled user
evaluation aimed at proving that the SparqlBlocks environ-
ment may be used to build nontrivial queries on Linked Data
without prior knowledge of RDF, SPARQL, or even of the
data source’s content and structure.
Paper organisation. After introducing the technological back-
ground in Section 2, we present and discuss related work
in Section 3. In Section 4 we describe the SparqlBlocks
visual language and environment, reviewing their specific re-
quirements and features, while in Section 5 we describe its
implementation. An analysis from the perspectives of cognitive
dimensions and query affordances is given in Section 6, fol-
lowed in Section 7 by the description of preliminary informal

1http://sparqlblocks.org/
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feedback from users and how, based on that feedback, the
design evolved. The tool has been evaluated in a user study,
described in Section 8, that involved 11 users without prior
knowledge of either RDF, SPARQL, or the structure and
content of the used dataset. The experimental results are shown
both from a quantitative and a qualitative point of view in
Sections 9 and 10, respectively. As pointed out in the con-
clusive discussion in Section 11, the results are encouraging,
as users were satisfied by the user interface and able to build
nontrivial queries, but they also reveal a number of possible
improvements for the tool.

2. Background
We introduce the basics of the RDF data model, the

SPARQL query language, and DBpedia, a dataset that will
be used for examples and evaluation. We then briefly describe
the block programming paradigm.

2.1. Data Model: RDF
In the Resource Description Framework (RDF) [3], the data

model proposed by the W3C for Linked Data, knowledge is
represented via RDF statements about resources, which are
meant to represent anything in the “universe of discourse”,
e.g. documents, people, physical objects, abstract concepts.
An RDF statement is represented by an RDF triple, composed
of subject (a resource), predicate (specified by a resource as
well, called a property), and object (a resource or a literal, i.e.
a value from a basic type). An RDF graph is a set of RDF
triples.

A literal is a simple value that can be either a language-
tagged string — a string associated with a language tag that
identifies the (natural) language of the label — or a typed
literal — a value expressed with a string and an associated
type that may be any IRI, but which is usually one of the basic
datatypes defined by W3C for the XML Schema Definition
Language (XSD) 1.1 [11].

Resources are identified by an Internationalized Resource
Identifier (IRI) [12], a generalization of the Uniform Resource
Identifier (URI) [13] for retrieving content in an HTTP context.
A resource may have one or more types, which are also
resources. If a resource is used as type for other ones, it is
called a class. A human-readable version of a resource’s name
is a string literal, called its label. A resource may have one
or more labels. Thanks to language tags, a resource can have
labels in different languages.

An RDF dataset is a set of named RDF graphs, i.e., RDF
graphs associated with an IRI, the graph name, along with a
single default graph, an RDF graph without a name. Named
RDF graphs are used to represent data associated with specific
contexts. Usually the default graph of an RDF dataset is either
the union of all the named graphs or holds meta-data about
the named graphs.

RDF graphs and RDF datasets can be serialized through dif-
ferent concrete RDF syntaxes (Turtle, JSON-LD, XML/RDF).
A common feature of multiple RDF syntaxes (used also in

SPARQL) is that prefixes can be used in place of the initial
part of an IRI, which represents specific namespaces for
vocabularies or sets of resources. For example, the two IRI
namespaces for standard RDF concepts2 are usually referred
to via the prefixes rdf: and rdfs:, as in rdf:type, which is the
property used to associate a resource with its type(s) and in
rdfs:label, which is the property used to associate a resource
with its label(s).

Figure 1 shows a graphical depiction of an RDF graph
where resources are represented as ovals, literals as rectangles,
and triples as labelled arrows connecting them (from subject
to object, while the label represents the predicate). The labels
for resources and predicates (that are resources too) are IRIs
in prefix notation, while the labels for literals are the lexical
representation of the literals.

In Listing 1, the same RDF graph is represented using
Turtle, an RDF syntax offering prefix notation. Turtle allows
authors to avoid repeating the subject of a sequence of triples
when it is the same. The semicolon (;) separates predicate/ob-
ject pairs that apply to the same subject. The dot (.) separates
blocks of triples having a common subject.

@base <http://www.w3.org/> .
@prefix rdf: <1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <2000/01/rdf-schema#> .
@prefix dbpedia: <http://dbpedia.org/resource/> .
@prefix dbo: <http://dbpedia.org/ontology/> .

dbpedia:Mount_Everest
rdf:type dbo:Mountain ;
rdfs:label "Mount Everest"@en ;
dbo:elevation 8848 ;
dbo:locatedInArea dbpedia:Nepal ;
dbo:locatedInArea dbpedia:China .

dbpedia:K2
rdf:type dbo:Mountain ;
rdfs:label "K2"@en ;
dbo:elevation 8611 ;
dbo:locatedInArea dbpedia:China .

dbpedia:Nepal
rdf:type dbo:Country ;
rdfs:label "Nepal"@en .

dbpedia:China
rdf:type dbo:Country ;
rdfs:label "China"@en .

Listing 1. Turtle code for the RDF graph in Figure 1.

2.2. Query Language: SPARQL
SPARQL [4] is the standard query language for RDF

datasets3, based on the notion of triple pattern, an RDF triple
in which each component can be replaced by a variable. A
basic graph pattern is a set of triple patterns associated with

2http://www.w3.org/1999/02/22-rdf-syntax-ns# and http://www.w3.org/
2000/01/rdf-schema#

3For conciseness, rather than describing SPARQL syntax in detail, we just
show the basics of SPARQL semantics and then a few elements of the syntax.
This should be sufficient to both (1) have an idea of the language and (2)
understand the SPARQL queries that are shown in the paper in comparison
with SparqlBlocks syntax.
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Figure 1. Part of the RDF graph served by the SPARQL endpoint of DBpedia.

a specific input graph (the default graph, a graph named by a
IRI, or a generic named graph referred to via a variable). When
executing a SPARQL query, the basic graph pattern is matched
against the input RDF dataset and the result is a multiset of
tuples, each tuple corresponding to a binding for each of the
variables. Relations generated through basic graph patterns can
be filtered, composed, or grouped using relational operators.
The result of a SPARQL SELECT query (one of the available
query types and the one that will be considered in this work)
is a multiset of tuples that can be optionally ordered, making
it a list of tuples.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT DISTINCT * WHERE {
?mount

rdf:type dbo:Mountain ;
dbo:elevation ?height .

}
ORDER BY DESC(?height)
LIMIT 3

Listing 2. SPARQL corresponding to blocks in Figure 11.

Table 1. Results of query in Listing 2.

?mount ?height

<http://dbpedia.org/resource/Mount_Everest> 8848.0
<http://dbpedia.org/resource/K2> 8611.0
<http://dbpedia.org/resource/Kangchenjunga> 8586.0

SPARQL syntax is reminiscent of SQL syntax and clauses
like SELECT, ORDER BY, and LIMIT have in SPARQL the
same meaning as in SQL. Basic graph patterns are represented
reusing Turtle syntax for RDF graphs with the addition of vari-
ables, which are represented by labels prefixed by quotation

mark and have as scope the whole query4. Both basic graph
patterns and operations like filter or union are specified in the
WHERE clause of the query. Listing 2 shows a query to get
the three highest mountains. Table 1 shows the results of the
query when executed on the RDF graph in Figure 1.

The SPARQL Protocol [14] is a protocol over HTTP used
to provide a Web API to query an RDF dataset. The client
sends queries to a service offering this API and gets back
the results. The URI at which a SPARQL Protocol service
listens for requests is called a SPARQL endpoint. Several RDF
datasets offer publicly accessible SPARQL endpoints.

2.3. A Reference Dataset: DBpedia
Both in the examples and in the user evaluation we used

a well known Linked Data source: DBpedia [15], an RDF
dataset generated from Wikipedia. It is obtained through a
set of scripts that extract structured data from the Wikipedia
pages, especially leveraging the content of infoboxes, fixed-
format tables that can be found in the right-hand corner of
some articles. In the Linked Data community, DBpedia is
widely considered a reference dataset because of its wide
coverage and the long-term continuity of the project.

2.4. Block Programming
Programming environments for block languages typically

offer a visual, drag-and-drop interface. Blocks are graphical
elements associated with code snippets, which can be con-
nected to one another like jigsaw puzzle pieces, at the same
time composing in a syntactically correct form the associated
code. Different kinds of blocks have different shapes, so that

4When using subqueries, which are neither described here nor available
in SparqlBlocks, the scope of a variable is instead restricted to the current
subquery, unless it is projected out in the SELECT clause
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the way they can be combined is visually apparent, exposing
the affordances of the language and preventing syntax errors.
In Section 4.3 we will present in detail the features of block
programming environments that we have adopted in Sparql-
Blocks.

From now on, we adopt for block programming concepts the
notation used in the documentation and code of Blockly [16],
a widely used block programming library on which our tool
is based.

3. Related Work
We report on visual query tools for Linked Data as well as

on block programming environments.

3.1. Structured Queries on Linked Data
Several interactive tools have been proposed to support

structured querying of RDF data sources, at various levels of
abstraction and using different paradigms. A basic distinction
can be made between tools: (1) those requiring usage of
SPARQL syntax and (2) those based on metaphors aimed
at lowering the learning curve and providing more intuitive
interaction. The first kind of UIs includes advanced editors,
e.g. YASGUI [17], or integrated environments, e.g. Twinkle5,
but users still have to know SPARQL and the vocabularies
used in order to design a query.

UIs of the second kind provide interaction with another
— textual or visual — representation of the query, then
transformed to SPARQL to be executed. Text-based UIs use
forms, e.g. SPARQLViz [18], or controlled construction of nat-
ural language statements, e.g. SPARKLIS [5]. These systems
do not scale well when the query complexity increases and
do not easily permit code reuse. As for visual tools, most
of them use a graph-based paradigm (e.g. NITELIGHT [6],
QueryVOWL [19]), others a dataflow-based paradigm (e.g.
SparqlFilterFlow [20]), and at least one, VQS [21], a combina-
tion of both. Graph-based interfaces fit the RDF graph pattern
matching model well and they can be see as one possible RDF
embodiment of the successful query-by-example paradigm, in
which the user defines queries by perusing the same structure
of the data (tables in the original definition for relational
databases [22], graphs in the case of RDF). Dataflow-based
interfaces, on the other side, are effective in representing
SPARQL functional operators (e.g., UNION). However, both
types of interfaces are inefficient in terms of screen real estate
and may present problems with interaction.

There is an existing tool that adopts the block programming
paradigm for building SPARQL queries: the SPARQL/CQELS
Visual Editor designed for the Super Stream Collider frame-
work [23]. In that tool, blocks strictly follow the language
structure and syntax and the UI requires at least basic knowl-
edge of SPARQL. Conversely, the SparqlBlocks UI is intended
to to provide blocks that should be mostly self describing
and usable also without previous knowledge of the SPARQL
syntax.

5http://www.ldodds.com/projects/twinkle/

Finally, for most of the existing tools, the visualization
of the result set is passive and presented in an independent
container (e.g., in many Web-based interfaces, the result page
replaces the query page). In our system, a query and its results
share the same workspace, supporting interactive database
exploration.

3.2. Block Programming Environments

The MIT Media Lab pionereed research in educational tools
for teaching the use of technology and especially programming
skills. This research provided the foundation for the develop-
ment of StarLogo [24], then Scratch [7] — the first broadly
successful visual programming software for kids — and their
successor for mobile apps, MIT App Inventor [8], which was
originally developed at Google and is now based at MIT. The
block programming paradigm has since been applied to several
scenarios.

Apart from the cited SPARQL/CQELS Visual Editor, other
block programming environments have been created to design
structured queries. Bags [25] and DBSnap [26] are two visual
tools to design relational algebra expressions. The former has
the typical block programming look and is similar to Scratch,
while the latter has a peculiar tree appearance to suite the
specific context. Results so far show the effectiveness of these
approaches to teach relational algebra concepts [26]. In fact,
SparqlBlocks’ relational operators are modelled in a similar
way. But many of our operators are unique to our case because:
(1) we operate on a graph data model, instead of on a relational
database; (2) we allow the user to perform queries on any
online SPARQL endpoint, not just on a predefined set of
relations.

It is also interesting also to see how block program-
ming environments following the imperative paradigm have
been extended to allow querying and manipulating data from
databases. App Inventor has interfaces to online database
services like Google Fusion Tables6 and Firebase Realtime
Database7. Punya8, a fork from App Inventor to build mobile
applications for crisis data [27], has blocks to send SPARQL
queries and receive the results. In the Learning with Data
project, Scratch has been extended with blocks that query
a specific dataset [28]. The approach followed in all these
cases is to offer a fairly thin layer of indirection among the
environment and the service offered by the database. In these
environments, blocks are used to execute the queries, but not
to build them: either only basic queries can be executed (most
of the environments) or complex queries are passed as text
(e.g., SPARQL queries in Punya) that must be built by other
means. In a way, these environments stop where SparqlBlocks
kicks in, at the level of the logic of the query. They are thus
not comparable with SparqlBlocks, being instead potentially
complementary to it.

6https://fusiontables.google.com/
7https://firebase.google.com/docs/database/
8http://air.csail.mit.edu/punya/
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4. Features of the Programming Environment
We describe here the SparqlBlocks UI, along with mo-

tivations for the main design choices. We first present the
requirements we identified and the main strategies chosen to
approach them. We then proceed to describe the solution, from
its top-level features to the details of the visual language,
describing the different types of blocks provided.

4.1. Requirements
Based on an analysis of the existing tools, and the short-

comings discussed above, we identified the following basic
requirements for the design of the SparqlBlocks UI:

1. users need not know SPARQL syntax — hence visual
clues and constraints should prevent syntax errors;

2. users’ need for inputting text should be minimized;

3. users should have direct access to commonly used struc-
tures;

4. users should be able to use SparqlBlocks as a step to
learn the SPARQL (textual) syntax;

5. users should be able to work even without prior knowl-
edge of the dataset — hence exploratory queries should
be explicitly supported.

4.2. Main Strategies
In order to meet the previous requirements, we opted for

the following general strategies.

• Explicit language affordances. Users should be able to
visually explore the set of available language elements
and how they can be combined.

• Prevention of syntax errors. All admissible sentences in
the visual language should correspond to actual queries.

• Multiple ways of achieving a solution. It should be
possible to build a query in many different ways, as in
the underlying SPARQL language, to cope with different
approaches.

• Block Programming. The user interface should use the
block programming metaphor, with language elements
represented by visual, composable blocks.

• Results view integrated with query view. User inter-
faces for building queries — both textual and visual
ones — typically consist of two separate areas, one for
the query and one for the results. They may be shown
simultaneously, one along the other, or at different times,
one after the other. To facilitate the exploratory design of
queries, we should instead experiment with mixing results
and views in the same workspace. It should be possible
to design more than one query at once and to show
the corresponding results beside each query. It should be
possible to use the visual elements corresponding to the
results of a query to create new queries or to modify the
current one.

4.3. General Block Programming Features

Based on these general strategies, we designed a concrete
solution, considering also the constraints imposed by the tech-
nologies and the required effort. Figure 2 shows a screenshot
of the SparqlBlocks UI. We start our presentation of the
SparqlBlocks language and environment by listing the top-
level features of the solution.

The following features are the ones that are common to
most block programming environments.

Language elements as blocks. Language elements, repre-
sented as keywords and grammar structures in textual lan-
guages, are represented as blocks (see labels a and b in
Figure 2). Different language elements are represented by
blocks with different visual properties (shape, color, textual
labels, icons, etc.). Language items that require flexibility in
their definition (like literal values and variable names) are
represented in the blocks through fields (c) that provide an
input of some kind (free text, dropdown).

Program structure through block composition. Blocks
connect to each other via jigsaw-like connectors (d) The
syntax of the language is then defined by the available blocks
and how they may be connected. Possible connections are
hinted to the user by the visual properties of the connector
(male/female, shape) and implemented by visually dragging
and attaching one block to another.

Workspace as canvas. The programmer’s workspace is
shown as an unlimited canvas in which to organize and connect
the blocks (e). The connections define the program, thus
having a directly functional meaning, while the placement of
blocks in the canvas space has no effect on the program: it
serves the purpose of code organization and potentially of
communication in case of a collaborative setting. The canvas
has some of the usual controls of the window metaphor,
scrollbars and zoom, along with a control of the desktop
metaphor, the trash bin to delete blocks.

Visual toolbox as inventory of components. The
workspace usually starts empty and blocks are dragged from
the area for the toolbox component (f ), where the available
blocks are organized into categories (g).

Shadow blocks as defaults and examples. This is a new
feature introduced in Blockly to represent defaults and usage
examples. Shadow blocks (i) can be blocks of any of the
defined block types, with a specific behaviour: they are shown
in a lighter shade of the same colour and they disappear if
another block is connected in their place. They are used inside
other blocks to offer sensible defaults or example values, while
remaining less intrusive than regular blocks used for the same
purpose: regular blocks would remain on the workspace after
replaced and may hence need to be deleted/moved with a
further user action.
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Figure 2. The user interface of SparqlBlocks.

Figure 3. A class diagram synthesising information on the block types in SparqlBlocks.

4.4. Specific Features of SparqBlocks

The following features are the main ones specific to the
programming environment of SparqlBlocks.

Query blocks, pattern blocks, and expression blocks.
Multiple types of blocks are connected to build queries. Fig-
ure 3 shows the taxonomy of block types used in SparqlBlocks,
in the form of a class diagram, also presenting information on
fields and relations between block types. All the classes that
are further specialised are represented as abstracts. Each block
of type Query represents the execution of a query against a
specific SPARQL endpoint (see Section 4.5). It also maintains
two pieces of information:

• the from text field, in which the URL of the remote

SPARQL endpoint has to be specified9;

• the limit numeric text field, which sets the maximum
number of result rows that are returned.

A specific query is defined by a structure of Pattern blocks
that the user composes inside the query block. Each pattern
block represents in turn either part of a basic graph pattern on
the dataset or some operator to be applied on other patterns
(see Section 4.7). Finally, Expression blocks are used for
language structures representing scalar values, i.e. single RDF
terms, variables, and calls to SPARQL functions and operators
(see Section 4.6). Each of these three main types of blocks has
different external connections, so that users can immediately
distinguish the role of these categories: query blocks have

9In the examples in this paper the value of the field is always the DBPedia
endpoint [15].
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no external connections, pattern blocks have top and bottom
connections, expression blocks have one left connection. These
visual cues are important, but not sufficient, as specific sub-
types have different roles in the language. So, when a block of
a specific type is expected on a connection end, the systems
checks if the block being connected is compatible. If the check
fails, the block is “repelled” by the connection, thus signalling
to the user that the connection is not permitted.

Results of execution as blocks. The results of a query are
shown as blocks that can be used in the workspace, either to
modify the query itself, or to build new queries (see Figure 4d).
This feature supports an exploratory approach to the design of
the queries.

Queries and results integrated in the workspace. To
support the reuse of query results as blocks, results are part
of the workspace itself, attached to the corresponding query.
This enables to have multiple queries and their results directly
visible and actionable together in the workspace, avoiding the
need to switch between different query outputs.

Live query execution. Queries in the workspace are im-
mediately executed when created and every time they are
changed. This means the user has immediate “real time”
feedback10 and may change the query accordingly.

Export of queries and results. Users can export queries to
see them represented in the SPARQL syntax. Proficient users
may use this feature to sketch a new query visually and then
continue working on it in SPARQL, while others may profit
from this feature to learn SPARQL syntax. Result sets may
also be exported for reuse.

Built-in queries. The blocks defined so far offer a bottom-
up approach in which queries are built from components that
represent basic functional elements. Along with those basic
components, the tool provides a set of higher level blocks
to perform specific queries that are often needed. These are
the queries used to look for classes and properties in the
used vocabulary and for specific resources in the data (see
Section 4.8).

4.5. User Query Blocks

The language mimics the structure of SPARQL. As in
SPARQL, the simplest query is defined through a basic graph
pattern, whose simplest form is in turn a triple pattern. The
blocks in Figure 4a form a triple pattern that matches any triple
having dbr:The Beatles as subject and dbo:formerBandMember as
predicate. For each such triple, the variable member is bound to
the corresponding object (see Section 4.7 for details on pattern
blocks).

10The time to get the results from a remote SPARQL endpoint obviously
depends on bandwidth and server response times for the specific query.
Nevertheless, as the queries are executed asynchronously, possible delays do
not affect the responsiveness of the user interface.

In order to execute a query defined according to this pattern,
the user query block11 (see Figure 4b) is defined. This block,
representing a whole query on its own, has no external con-
nections, as it is not meant to be stacked or put inside other
blocks. Instead, it has the following fields and connections,
besides limit and from, inherited from the abstract class Query:

• the where connection, hosting a sequence of graph pattern
blocks (see Section 4.7) describing the query;

• a variable number of orderBy connections, in each of
which an expression block (see Section 4.6), typically
a variable, represents an ordering criterion;

• a drop down direction field for each orderBy connection,
to select the direction (ascending/descending) of that spe-
cific criterion;

The number of orderBy connections is variable because a
desired ordering may be obtained by a sequence of criteria
(e.g., from a dataset of some people and their telephone
numbers, to generate a telephone directory we may order first
by surname and then by name when the surname is the same).
To avoid to overly complicating the ordering mechanism, this
variability is managed in a simple way: even if the ordering is
not required, an empty connection is already available when
the query is dragged to the workspace; as soon as a block
is connected to this connection, a new empty connection is
created to the right and so on, so that an empty connection is
always available. This is the only case in which we allow an
empty connection12.

As soon as a pattern is attached to a query block, the query
is run on the remote dataset. Figure 4c shows the query block
connected to the pattern and “waiting for the results”. When
results are ready (as in Figure 4d), they appear in tabular
format attached to the lower connector of the query block.
Each row of the results represents a different matching of the
pattern, with the corresponding variable bindings. The single
data items are represented as expression blocks (specifically,
resource and literal blocks) that can be dragged from the result
set to create other queries (or even to modify the one that
generated them).

If the content of a query block is modified, the new query
is executed immediately and results shown as soon as they are
available13. Query execution is in any case non-blocking, i.e.
the UI is reactive and operational even if one or more queries
are being executed.

11The complete name “use query block” is here used to distinguish this
block from the built-in query blocks described in Section 4.8. In the rest of
the paper, this block is also called simply “query block” when the meaning
is not ambiguous.

12This choice has admittedly the potential to confound the user in believing
that a block is strictly required in that empty connection. Nevertheless, the
other alternatives that have been evaluated (like using the Blockly mutator
mechanism, that requires opening a sort of mini-workspace used to configure
a block through blocks representing parts of it) pose other forms of cognitive
overhead. In the evaluation described later in this paper, this choice did not
cause confusion in the users.

13When the query is modified, the table with the previous result set is
also immediately wiped (replaced with the “execution in progress...” block in
Figure 4c) to avoid any confusion.
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(a) Blocks for pattern (b) Block for query

(c) Blocks joined and query in execution

(d) Query executed and results shown

Figure 4. Execution of a query in SparqlBlocks.

4.6. Expression Blocks

Expression blocks (see b in Figure 2) are visually identified
by having horizontal output (male) connectors and represent
the elements of the SPARQL language that correspond to
scalar values. The expression blocks are further classified in
resource blocks, literal blocks, variable blocks, and function
call blocks.

Resource blocks may be specified either with a full IRI or
in prefix notation (e.g. dbpedia:Beatles in Figure 2). Sparql-
Blocks offers ways to look for resources in a dataset and to
cast them directly as usable blocks (see Sections 4.5,4.8, and
categories Resources and Vocab in Section 4.9). As a further
option, users can look for the IRI through external means (e.g.,
a Linked Data browser, like the one used as front-end for
the resources by DBpedia) and then copy/paste it on a blank
resource block; if a known namespace is recognized, the IRI
is converted on the fly to the prefixed version.

Literal blocks hold strings with an optional language tag
(e.g. "robot"@en in Figure 2), booleans, or numbers (e.g. 42 in
Figure 2).

Variable blocks are used as wildcards in patterns. They are
represented by specific blocks with a drop-down menu, that
can be used to create a new variable or use one of the existing
ones (subj in Figure 2).

Function call blocks represent calls to SPARQL functions
and operators (lengthOf, absolute, <, +, etc.). Each function
call block has a number of internal connections equal to
the number of parameters (operands) that the corresponding
function (operator) has. Each internal connection accepts an
expression block.

Even if the output connectors for all the value blocks have
the same appearance, they cannot all be connected in the same
ways, because of the different roles in the language. RDF terms
and variables can be used in basic graph patterns (with some
limitations, see Section 4.7), while functions/operators cannot.
The latter are permitted whenever, in SPARQL, expressions
can be used. Currently, in SparqlBlocks, this corresponds to
the case of filters (see Section 4.7) and ordering.

4.7. Pattern Blocks
Pattern blocks (see a in Figure 2) are visually identified by

having vertical connectors (female on top and male on bottom)
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that allow them to be stacked one under the other and used in
specific contexts, like the where connector of the query block.
As for the value blocks, even if the output connectors of all
the pattern blocks have the same appearance, they cannot be
connected all in the same way. In the case of pattern blocks
there are two strictly separated types: the pattern blocks, and
the branch blocks.

(a) Graph Pattern (b) Branch

Figure 5. Blocks for basic graph patterns.

Basic graph patterns are built using the blocks shown in
Figure 5, starting from the graph pattern block (Figure 5a),
used to group triple patterns that have a resource or variable
in common. It has two internal connectors:

• a subject connector that accepts a resource block or
variable block;

• a branch set connector for adding triple patterns related
to the common resource/variable, accepting a sequence
of branch blocks.

A branch block adds a triple pattern for which the com-
mon resource/variable of the basic graph pattern block is the
subject. It has two internal connectors:

• a predicate connector that accepts a resource block or a
variable block;

• an object connector that accepts a resource block, a literal
block, or a variable block.

Hence, following SPARQL syntax (see Section 2.2), branch
blocks can be stacked into basic graph pattern blocks to
join multiple triple patterns that have a resource/variable in
common. Basic graph pattern blocks can be in turn stacked
one upon another to build more complex basic graph patterns.

(a) Filter (b) Optional pattern

(c) Union of
two patterns

(d) Named graph pattern

Figure 6. Pattern blocks beyond basic graph patterns.

Apart from the basic graph patterns, other pattern blocks
can be used to build more complex queries:

• the filter block (Figure 6a), filters the matchings of the
graph pattern sequence14 according to a given condition
(which must evaluate to true to pass the filter); the filter
connector accepts an expression block that will be eval-
uated as boolean;

• the optional block (Figure 6b) adds a sequence of graph
pattern blocks as optional in the sense that its matching
is not required but if matched the variables will be bound
accordingly;

• the union block (Figure 6c) adds two sequence of pattern
blocks as alternatives in the sense that the union of the
matching of the first and the second pattern will be
considered;

• the named graph block (Figure 6d) selects a specific
named graph of the source RDF dataset (via the choose
connector, accepting a resource block or a variable one),
for the sequence of contained graph patterns.

4.8. Built-in Query Blocks
There are some queries that are useful for every RDF

dataset, regardless of its specific domain, for example queries
used to explore the vocabulary used in a dataset, i.e. the IRIs
used for classes, properties, and other important resources.
Hence, we present the user with a library of built-in query
blocks that offer pre-built queries for common tasks. The
BuiltinQuery type of blocks inherits from Query the from and
limit fields, to specify the SPARQL endpoint and the maximum
number of result rows, respectively. These blocks also have
an inGraph connector that optionally accepts a resource block
to select a named graph from the dataset (if not used, the
default graph is selected). As with user query blocks, the built-
in query blocks are executed as soon as the required fields and
connections are filled and are executed again each time some
of the fields or connections are changed. The results, also in
this case, are shown as a table connected to the lower part of
the query.

Currently, the library comprises the following blocks15:

Search resources block, having a withType connector,
which accepts a resource block and a named connector, accept-
ing a literal block with text (Figure 7a). It looks for resources
of the specified type and containing the specified text in their
label. The columns of the table of results are ?resource and
?label.

Search classes block, having a named connector, which
accepts a literal block with text (Figure 7b). It looks for classes
whose label contains the specified text. The typical use of a
class in a query is to look for instances of that class. So, to
give a sensible default and to reduce the potential errors, for
every result there is a column with a pre-built pattern looking

14The filter block operates on the graph pattern sequence this block is part
of, i.e. the sequence comprising blocks stacked both above and below the
filter block.

15To keep the diagram of Figure 3 simple, we do not detail these specialised
classes.
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(a) Search Resources

(b) Search Classes

(c) Search Properties

Figure 7. Built-in query blocks.

for instances of that class. The columns of the table of results
are ?class, ?label, and ?pattern.

Search properties block, having the optional connectors
fromClass and toClass, both accepting resource blocks, and
a named connector that accepts a literal block with text
(Figure 7c). It looks for properties such that the specified text
is contained in their label, optionally going from a given class
to another given class. The typical use of a property in a query
is to look for pairs of resources connected by that property.
So, in analogy with the search classes block, there is a column
with a pre-built branch that uses the property. The columns of
the table of results are ?property, ?label, ?domain, ?range,
and ?branch.

4.9. Organization in Categories
Blocks are visualized and organized (in the toolbox) ac-

cording to their role. The query block is provided under
the category Query. Blocks used to build graph patterns are
grouped under the category Patterns. The optional, union, and
named graph blocks are under the category Compose. The
categories Logic (also containig the filter block), Math, and
Text contain literal, operators and functions blocks, organized
according to their types. Resource and variable blocks are

available in the respective categories Resources and Variables.
The category Vocab contains some pattern and branch blocks
for standard vocabularies, organized by categories named after
each of the vocabularies. Finally, all the built-in query blocks
are grouped under the category Search, as they all deal with
retrieving resources.

5. Implementation
Blockly [16] is a JavaScript library for block programming

maintained by Google, on which several tools — including
MIT App Inventor 2 — are based. It provides a set of basic
blocks covering the structure of typical imperative programs.
Most importantly, it is also extensible programmatically to
define new blocks. SparqlBlocks is based on an extension
of the Blockly JavaScript library, working entirely on the
client side. We extended the library to supply the specific
blocks needed for SPARQL queries and execution. We also
added the necessary code to generate SPARQL fragments
from the blocks. The SPARQL execution block listens for
changes in its query connection; each time the query changes,
the corresponding SPARQL query is generated and sent to
a SPARQL endpoint. The SPARQL endpoint to be used is
set as a field of the execution block. The results are used to
dynamically generate the result block and its sub-blocks. The
standard prefix definitions from prefix.cc16 are used to add
prefix declarations in the query sent to the endpoint and to
convert the IRIs in the result to the prefixed notation.

SparqlBlocks is available online17 and can be used directly
to query any public SPARQL endpoint. Furthermore, the code
is free and publicly available18.

6. Design Evaluation
Before organizing an evaluation with the users, Sparql-

Blocks was formally evaluated “in house” using the relevant
heuristics. We will first present its evaluation in terms of
cognitive dimensions and then analyze its affordances in the
specific context of query design.

6.1. Cognitive Dimensions
Cognitive dimensions [29] is a framework developed by

Green for the analysis of the properties of programming
languages. Green and Petre later derived from that general
framework a more specific one targeting visual programming
languages [30]. An initial evaluation of SparqlBlocks was per-
formed based on the cognitive dimensions deemed as relevant
to our context.

Consistency. The block syntax favours internal consistency;
external consistency is satisfied with respect to SPARQL tex-
tual syntax because the structure is maintained and, partially,
with respect to other Blockly-based languages because the
appearance and behaviour of basic expressions is preserved.

16http://prefix.cc/
17http://sparqlblocks.org/
18https://github.com/miguel76/SparqlBlocks
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Diffuseness. Representation through blocks requires more
space than textual representation. However, SparqlBlocks is
designed to be efficient in terms of graphic entities, with the
visual appearance of each block tuned to minimize the space
required for it.

Error-proneness. The chance of making syntax errors is
extremely reduced, compared to textual syntax: the affor-
dances are first coarsely constrained by the differences be-
tween shapes, then by other visual cues, and finally by the
behaviour of visual elements. The use of results for refining
existing queries or creating new ones reduces the chance of
mismatches between queries and data structure.

Hidden dependencies. Dependency and scope of variables
are strictly related to the SPARQL query structure that is
closely followed by the block structure.

Premature commitment. Queries can be as easily mod-
ified, decomposed, and recomposed at any time, the user is
thus not forced in any way to stick to earlier decisions.

Progressive evaluation. A trial and error approach is
favoured by the automatic execution of queries in query
blocks. While the user builds a query, she can immediately see
its results. Furthermore, the user can try, as separate queries,
any graph pattern that will eventually become part of the
complete query. This method is favoured by the possibility
of having multiple queries in the workspace.

6.2. Query Design Affordances
To further argue in favor of the proposed paradigm, we

show some of the affordances of SparqlBlocks related to the
query construction process. We analyse the basic operations
that a developer — whether an expert or a beginner — needs
to perform. The underlying idea is that designing a query
is an interactive process in which the query emerges from
a sequence of basic operational steps, possibly retracting or
modifying the effect of previous ones, without having to be
completely detailed in advance.

Generalization/Specialization. The design of a query may
proceed from a generic version, with a minimal number of
constraints, designed to start getting some data. Then, by
adding constraints, the query will gradually become more
selective. This process, which we call query specialization, is
supported by reducing the free variables (through replacement
with constant values or with already used variables), by adding
filter blocks, by adding more complex basic graph patterns to
be fulfilled, and by moving patterns out from an optional or
union block. The usage of blocks also for representing query
results allows the user to easily identify and manipulate the
specific blocks corresponding to resources or literals needed
to replace variables or to create filter expressions. An example
of query specialization is the transformation from the query in
Figure 8a (which asks for some mountains and their locations)
to the query in Figure 8b (where only Brazilian mountains are
selected) by dragging the resource dbpedia:Brazil from the
results in the place of the variable area.

The design of a query may also start from a specific query
on known data and then proceed by relaxing some constraints
to include a greater set of results. This process of query gener-
alization is supported by replacing constant values with vari-
ables, by removing filter blocks, by removing graph patterns
(or part of), and by moving graph patterns under an optional or
union block. These actions correspond directly and naturally
in SparqlBlocks to the removal of blocks or the creation of
new ones for the variables. An example of generalization can
be the reversal of the specialization example, i.e. from the
query in Figure 8b to the one in Figure 8a, by dragging on
the workspace a new variable block to replace the resource
dbpedia:Brazil.

Composition/Decomposition. A complex query may be
created by composing different queries together, so that, for
example, the output of separate components of the query
can be checked before composing them. As the proposed UI
permits multiple queries to be built and executed in the same
workspace, composition is directly executed by joining blocks
from different queries19. For example, to build a query for
European mountains, the user may first design a query to get
mountains (Figure 8a) and another query to get the European
countries (Figure 9a). The complete query can be composed
by dragging the graph pattern of the latter query and adding it
inside the former one and changing the area variable to country

(Figure 9b).
The reverse operation is to decompose a query in smaller

ones. From the point of view of the UI the actions are similar
to the ones needed for composition: dragging blocks and cre-
ating some new ones. Reversing the example of composition
gives an example of decomposition.

Stepwise Querying. Sometimes a query design comes after
some exploratory steps that identify relevant resources, classes,
or properties. This approach is supported by permitting values
dragged out of the result set of a query to be used by other
queries. The old query may then be removed or simply kept
aside for further use. For example, Figure 10 shows the use of a
built-in query block to get some candidate classes to represent
the set of mountains, by searching among available classes
using their label attribute. As soon as dbo:Mountain is identified
as the relevant class, the corresponding resource block may be
dragged away and used for follow-up queries, as in Figure 8a
(in the object connection of the rdf:type branch of the basic
graph pattern).

7. Iterative Design

SparqlBlocks has been tested with users to evaluate and
identify possible improvements. An informal evaluation has
been carried on with expert users, whose observations have
led to several improvements in the tool.

19Blocks may also be duplicated to preserve the original queries.
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(a) Query to get mountains, generalization of query (b). (b) Query to get Brazilian mountains, specialization of query (a).

Figure 8. Example of specialization/generalization.

(a) Query to get European countries. (b) Query for European mountains, a composition of (a) and (c).

Figure 9. Example of query composition in SparqlBlocks.

Figure 10. Getting classes for “mount”.

7.1. Feedback from Users

After the first version of the tool was finished, we presented
it at the International Semantic Web Conference (ISWC)
2015 and at the IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC) 2015. These are top
conferences for, respectively, the Semantic Web and Visual
Languages research communities.

Demonstrating the tool in these two venues allowed us to
gather feedback from experts of two complementary aspects

of the user interface: its efficacy as a query design tool for
the Semantic Web and its expressivity as a visual language
(and specifically as a block programming language). The tool
was presented to interested users in the informal way typical
of software demonstrations in conferences. About a dozen of
users were invited to use the application and to share their
feelings about it in a colloquial fashion.

The following are the main reactions that we collected about
the system as a whole:

• the UI was seen as appealing by all the users;

• users had mixed feelings about ease of use: although
they felt the system was easy to use, they were not
immediately confident in using it, due to the perceived
complexity of the system in terms of available blocks
and possible combinations;

• most users considered the tool as novel, especially for the
use of the blocks in the results.

Detailed findings on specific UI elements are presented in
the next subsection, along with the performed changes.
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7.2. Changes to the User Interface

The overall positive reactions concerning novelty and appeal
of the SparqlBlocks environment elicited subsequent work to
improve it, especially in the areas that were perceived by the
users as lacking. The following changes were introduced with
the aim to achieve a better user experience.

Join query block with execution block to reduce the
number of different available blocks and types of connections.
The blocks were distinct because of their different conceptual
role, one representing a complete SPARQL query (containing
a sequence of patterns and fields for ordering and limiting the
results) vs. the other representing a SPARQL endpoint (con-
taining a query, the field for the endpoint URL, and a generated
output field for the results). In practice, the execution block
made sense only connected to the query block (and vice versa)
and the chance of moving an entire query from an endpoint
to another was not exploited enough to justify the increased
complexity. So the two blocks were joined together in a new
query block that includes also the text field for the URL of
the endpoint and the generated field for the results.

Simplify table of results to avoid confusion, reduce the
space occupied, and the cognitive load. The appearance was
changed from the previous complex block structure to a single
results block containing directly the draggable blocks, still
arranged in a table. While before there were a large number
of blocks used without functional reason, after the change the
only non-draggable block is the top one20.

Replace pre-built queries with built-in query blocks to
reduce the cognitive load for both beginners and experienced
users. Initially, instead of built-in query blocks, we provided
pre-built queries exposing all the details. The idea was to give
the chance to not only use them but also to learn from their
structure and change them according to specific needs. The
pre-built queries occupied a lot of screen space and repre-
sented a heavy cognitive load for all the users; beginners were
especially not confident of where the parameters for the query
had to be placed. After the change, the predefined queries
are represented by single blocks (the built-in query blocks) in
which the only exposed connections and fields correspond to
the parameters that must be set to use the queries.

Reduced use of predefined values to reduce confusion
in perceived affordances and avoid the perceived extra work
needed to replace values. Blockly allows the toolbox to contain
not just basic blocks, but pre-connected groups of blocks.
In the first version we used this feature to provide default
and example values for basic blocks. That was found to be
to confusing, so we reduced the use of these pre-connected
sub-blocks, in several cases replacing them with shadow sub-
blocks.

20Due to the way the layout of blocks is managed in Blockly, it is not
currently possible to avoid the use of this last non-functional block without
extensive implementation work.

Support for building queries from classes and properties.
The typical use of a class in a query is to look for instances
of that class. So, to give a sensible default and to reduce the
potential errors, for every result of a black-box query searching
for classes there is a column with a pre-built pattern looking
for instances of that class. Similarly, the typical use of a
property in a query is to look for pairs of resources connected
by that property. So, for every result of a black-box query
searching for properties, there is a column with a pre-built
branch that uses the property. In both cases, those added blocks
may be reused directly in a query.

Directly offer highly used classes and properties to avoid
unnecessary effort to discover or manually write down them.
Classes like foaf:Agent and properties like rdfs:seeAlso are
widely used in RDF datasets so it makes sense to have them at
hand, rather then discovering them via black-box queries. The
new toolbox category Vocab contains a set of subcategories
corresponding to different vocabularies. For each vocabulary
a set of common classes and properties is available, already
available in the form of patterns and branches.

Keep in memory resources that have being used during the
session, to recover specific resources, classes, properties that
may have been found and then lost. The category Resources
contains now both the blank resource blocks (one in prefix
notation and one in full URI notation) and all the previously
created resources, the most recent ones on top.

8. User Evaluation
After the updates described in Section 7, the SparqlBlocks

UI was evaluated by a group of Master students, PhD students,
and young researchers of the Computer Science Department
of Sapienza, University of Rome. They all had a solid back-
ground in Computer Science but they were not conversant with
specific Semantic Web technologies like RDF and SPARQL.
This evaluation was designed as a formal assessment involving
the solution of three tasks and a questionnaire.

8.1. Setup
Users went through an online questionnaire with questions

and activities organized in a sequential manner:

1. rate their own background expertise on Semantic Web
concepts (Semantic Web, Linked Data) and technologies
(RDF, SPARQL), databases (relational databases, graph
databases, SQL), and block programming environments
(by indicating known environments);

2. rate the expected complexity of each of the three tasks
beforehand, without having seen the tool yet, and figur-
ing out how difficult it would be to look for the reply
with access to the Web;

3. follow an interactive tutorial designed to teach basic use
of the SparqlBlocks environment;

4. execute three tasks with the tool;
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5. rate the actual complexity of executing each task;

6. rate the confidence in the result obtained for each task;

7. rate the tool for perceived easiness of use, appeal, and
novelty;

8. write open-ended comments on SparqlBlocks.

All the ratings were on a scale from 0 to 6. For the block
programming environments, participants were asked to select
the environments that they knew about, among a list including
the most common ones (Scratch, MIT App Inventor, etc.) and
the option other to include other environments.

11 people participated in the evaluation. Even if the whole
evaluation could have been executed online, in most of the
cases there was a facilitator so that further qualitative data and
feedback could be gathered. Only 3 participants executed the
tasks on their own. When present, the facilitator assumed also
the role of giving real-time help on the elements of the tool, as
currently there is not a complete help system embedded within
the tool. In any case, no explicit suggestions were given on
how to solve the tasks.

There were no time limits, but participants were informed
that the estimated duration of the test (including questionnaire,
tutorial, and tasks) was 50 minutes. They were told to try to
solve as many tasks as they could. They had thus the implicit
option to stop before achieving the solution of all the tasks
and record what they completed.

8.2. Tasks
The tasks were chosen so as to require the design of

structured queries of increasing complexity. Queries were run
on the DBpedia SPARQL endpoint. For each task, users were
asked to find the resource corresponding to the result by
building appropriate queries with the system:

1. third highest mountain in the world;

2. lowest mountain above 8,000 m in the world;

3. third highest mountain between China and Nepal.

These three main tasks were intertwined with some helper
tasks that required the user to find the elements that were
useful to design the main queries: the class used for mountains
and the one for countries, the property used for the eleva-
tion of mountains and the one used for their location, and
the resources used for China and Nepal. These helper tasks
required the appropriate use of black-box query blocks that
search for classes, properties, and resources. These classes,
properties, and resources could have been given directly to the
participants as basic blocks with which to build the queries, but
we preferred to test the more realistic situation in which the
user has no prior logic of the vocabulary used in the dataset.

Task 1 required building a query with a graph pattern to get
all the mountains and their elevations, then to set the ordering
to decreasing in respect to the elevation (see Figure 11).
Task 2 required adding a filter to that query, so that only
mountains with elevation more than 8,000 m. were selected,
and to invert the ordering to increasing (see Figure 12). Task 3

Figure 11. Query to solve Task 1.

Figure 12. Query to solve Task 2.

Figure 13. Query to solve Task 3.

required extending the graph pattern such that the mountains
selected are required to be located both in China and Nepal
(see Figure 13). Queries similar to the ones required in Tasks
1 and 2 were shown in the tutorial (using a text variable
instead of a numeric one), while no query in the tutorial had a
characteristic required in Task 3: two branches with the same
predicate but different objects. Listings 2 (earlier on page 3), 3,
and 4 show the SPARQL queries to solve the three tasks. They
are the textual counterpart of the block configurations shown
in Figures 11, 12, and 13.
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PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT DISTINCT * WHERE {
?mount

rdf:type dbo:Mountain ;
dbo:elevation ?height .

FILTER(?height >= 8000) .
}
ORDER BY (?height)
LIMIT 1

Listing 3. SPARQL corresponding to blocks in Figure 12.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbpedia: <http://dbpedia.org/resource/>

SELECT DISTINCT * WHERE {
?mount

rdf:type dbo:Mountain ;
dbo:elevation ?height ;
dbo:locatedInArea dbpedia:China ;
dbo:locatedInArea dbpedia:Nepal .

}
ORDER BY DESC(?height)
LIMIT 3

Listing 4. SPARQL corresponding to blocks in Figure 13.

9. Quantitative Results
All the participants filled out the questionnaire, followed

the tutorial, and were able to solve at least the first task.
The average total completion time was slightly higher than
the estimated 50 minutes, around 1 hour. 9 participants out
of 11 were able to solve all three tasks, while the other two
solved only the first task.

We proceed to show in more detail the quantitative data
gathered through the questionnaire and measuring completion
times for the different parts of the test. The group of par-
ticipants is small and thus these data do not have statistical
significance. Nevertheless, the following quantitative analysis,
along with the qualitative analysis presented in Section 10, is
useful to discuss the effectiveness and challenges of Sparql-
Blocks and to gain insights on aspects to consider for such
tools.

9.1. Questionnaire
The plots in figures 14 through 16 are histograms that show

the distribution of the ratings given by the participants. The
horizontal axis is rating on a scale of 0 to 6, while the vertical
axis is the number of participants who gave that rating21. Fig-
ure 14 shows the distributions for participants’ self-assessed
relevant background knowledge, while Figure 15 shows, for
each task, the distributions for expected (assessed before using
the tool) and actual complexity (using the tool) and confidence
of the results obtained (with the tool). Figure 16 shows the
distributions for the rating given by the participants to the
various aspects of the proposed user interface: ease of use, use

21The total height of all the bars in each plot is thus 11 (for the 11 users).

(a) Semantic Web (b) Linked Data (c) RDF

(d) SPARQL (e) Relational DBs (f) Graph DBs

(g) SQL

Figure 14. Distributions of knowledge of technologies

(a) Expected Complexity (b) Actual Complexity (c) Confidence

Task 1

(d) Expected Complexity (e) Actual Complexity (f) Confidence

Task 2

(g) Expected Complexity (h) Actual Complexity (i) Confidence

Task 3

Figure 15. Distributions of Complexity by Task

(a) Ease of Use (b) Use Appeal (c) Novelty

Figure 16. Distributions of Ratings for Tool Aspect
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appeal, and perceived novelty. Only two participants reported
to have used at least one block programming environment: in
both cases they had used Scratch, in one also Blockly Games.

9.2. Completion Times
Due to a bug in the logging of the tool we were not able to

record the detailed timing for the test, so for most participants
we have just the whole time of completion (including ques-
tionnaire and tutorial) that ranged between 46 and 76 minutes,
with an average of approximately 62 minutes. For 5 of the
participants, anyway, we have the breakdown of times among
questionnaire, test, and tutorial, which should give a quite
accurate estimate of what happened in the other cases. The
time to reply to the questionnaire was consistently around 4-5
minutes; the tutorial took between 19 and 33 minutes to be
completed (with an average of approximately 25 minutes); the
three tasks were solved between 23 and 48 minutes (with an
average of approximately 35 minutes). Among the tasks, the
first two required roughly the same amount of time (from 5 to
10 minutes each) while the third required roughly triple effort
(from 15 to 30 minutes).

9.3. Discussion
Regarding background knowledge and recalling that all the

participants are enrolled in the department of computer science
as at least Master students, it is not surprising that relational
databases (Figure 14e) and SQL (Figure 14g) are quite well
known subjects. Most of the participants declared to have a
midway expertise relating the Semantic Web (Figure 14a), but
did not know about specific Semantic Web technologies like
RDF (Figure 14c) and SPARQL (Figure 14d), with around two
thirds of the participants selecting 0 or 1. Also the Linked Data
expertise (Figure 14b) is fairly low (again, around two thirds
selecting 1), even if it is a term that shares a good part of
its meaning and technologies with the Semantic Web concept.
Maybe this could be explained by the fact that the term Linked
Data is less used than Semantic Web in an academic context.
Finally, it is also interesting to see that a technology like
graph databases (Figure 14f), which seems to be quite trending
among developers, is not well known in an academic group
of computer scientists.

We assume that the knowledge of relational databases and
SQL has helped participants in understanding the aspects
that SPARQL (and our closely related visual language) has
in common with relational algebra. At the same time, the
basic data model (RDF) is quite different from the relational
model and in part closer to the model of graph databases.
So the fact that RDF, SPARQL, and graph databases were
poorly known implies a potential challenge in understanding
the graph data model and the basics of SPARQL, which is built
on graph pattern matchings. The qualitative analysis described
in Section 10 confirms this issue.

Regarding the predicted complexity of tasks (Fig-
ures 15a, 15d, 15g), participants describe a progressively
growing complexity from Task 1 to Task 3, in agreement

with the increased complexity of the query required to solve
tasks. The complexity perceived after solving the tasks (Fig-
ures 15b, 15e, 15h) is distributed instead more like the ac-
tual solution times: Task 2 is considered only slightly more
difficult than Task 1, while Task 3 is perceived as much
more complex. The perceived confidence with the found result
(Figures 15c, 15f, 15i) follows a similar trend: participants are
quite confident in the solutions found for Tasks 1 and 2, while
confidence in the solution for Task 3 is mixed. Some hints for
the higher complexity found for Task 3 were already given
in Section 8.2: the novelty of an aspect of the query with
respect to the queries presented in the tutorial. This difference
is further discussed in the qualitative analysis described in
Section 10.

The comparison between the complexity expected for a task
and the actual complexity of solving it with SparqlBlocks
leads to a quite unappealing conclusion: the complexity met
by participants using the tool is typically higher than the
expected one. This is, in afterthought, a reasonable assessment
of complexity by the users: even if the tasks cannot be solved
by, say, a single Google query (and Tasks 2 and 3 cannot),
a user can quite easily find the results in a relatively short
time (compared to measured completion times) by exploring
the Web. Tasks 2 and 3 may probably be solved quicker by an
expert user of SparqlBlocks (Task 1 is such an easily found
answer that it would be hard to beat Google time), but for a
new user it is not the case. Needing to learn the vocabulary is
also a partial hindrance to the quick design of queries.

Perhaps in contrast with the complexity encountered when
solving the tasks, the analysis of the global ratings given by
the users to the tool is quite encouraging. The ease of use of
the tool is considered from average to good, perhaps recog-
nizing that the usage is not trivial, but after a bit of learning
SparqlBlocks permits building complex queries without having
to learn a specialized language like SPARQL. Better still,
the participants rated the tool as being highly appealing and
novel. While the assessment of novelty by users not familiar
with Semantic Web standards and tools may and should be
downplayed, the fact that the tool was appealing to non experts
of the field is for us a very promising result. We also recognize
that a probable contribution to this result is the appeal given
by the block programming paradigm to people that had not
experimented with it before (9 participants out of 11).

10. Qualitative Analysis

A facilitator attended most of the user tests (8 out of 11),
taking notes on relevant user behaviour, receiving explicit
suggestions and feedback, and following the chain of action-
related reasoning of the users. Furthermore, the online ques-
tionnaire contained an open-ended field for comments that was
used to describe the experience by the three participants that
worked on their own. The qualitative data gathered by these
means is summarized in this section, focusing on perceived
issues, strengths, and suggestions.
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10.1. Issues Found
The main issues recognized are described in the following

paragraphs.

Difficulties in understanding how blocks may be con-
nected. These appear to be due to two main reasons:

• Failure to understand the behaviour of the block-based UI,
especially for the cases of stacking pattern/branches (the
availability of the top and bottom connections to stack
similar blocks was not evident for many participants)
and of replacing shadow blocks (the connector was often
not recognized as available when a shadow block was in
place);

• Failure to understand the basic structure of patterns-
/branches, or the role of variables versus resources (many
participants were trying to find analogies with relational
algebra, which were often misleading with respect to
graph pattern matching and the way variables are bound
in SPARQL). A recurring error was using properties
in expressions or order by clause, where the intended
behaviour would have been realized by putting in the
same place the object variable connected to the subject
by that property (see for example the query in Figure 17,
where the intended query would have been the one in
Figure 12).

Figure 17. Syntactically correct query that has two constants com-
pared in the filter clause, leading to an empty result set as the filter
expression is always false.

Query execution and table results not self-evident. At the
beginning of the tutorial, the fact that the query is automati-
cally executed and that the table of results is attached to the
same block is not apparent. After some steps of the tutorial,
this fact was understood by everyone because it is central to
every action that is performed, but missing this fact initially
may confound the user and eventually slow down progress in
the tutorial.

Operators hidden in drop-down menus were hard to
find. Some operator/function blocks contain a drop-down
menu for selecting one such item; for example a block is used
for all comparison operators (<,≤,=,,,≥,>) and one for logic
operators (and,or). But in the corresponding category of the
toolbox, each block is shown with the default operator/function

selected, thus hiding the availability of other operators/func-
tions. That confused many participants, until the logic of the
groupings was understood (after which it was not a problem
anymore).

Difficulties in using variable blocks. The combination of
the nontrivial way in which variables are used in SPARQL
(different from both how variables are used in typical pro-
gramming languages and field names are used in SQL) and
some idiosyncrasies in the behaviour of variable blocks (they
have a drop-down menu with which the variable used in that
place may be changed to be one of the other variables in
use or rename it, but that changes all the occurrences of the
variable) lead to many difficulties in usage of variables. A
typical problem was that the participant, trying something or
just exploring, randomly changed a default variable to point to
another one, leading to the disappearance of the old variable
name (because being a variable name generated by default it
was not stored), then tried to return to the previous state by
using the rename command that changed instead the name
of that variable in both occurrences. Many times participants
expected that dragging a variable from a pattern to a filter
block or an order by field had a copy behaviour rather than a
move behaviour.

Complexity of task 3. While the issues in designing queries
for Tasks 1 and 2 were mostly related to understanding the user
interface and the basic blocks of the language, designing the
query for Task 3 proved to be a challenge in terms of actually
“thinking about it” for many participants. Several of them
initially tried a graph pattern in which the branch with property
dbo:locatedInArea was used just once and then tried to solve
the problem by using a filter that required the corresponding
variable to be both dbpedia:China and dbpedia:Nepal. As the fil-
ter is applied to a matching at a time, such query does not give
any results (a variable cannot have simultaneously two differ-
ent values). To solve this task, the query needs to have two
branches with property dbo:locatedInArea that may connect to
two different variables that can then be constrained to be equal
respectively to dbpedia:China and dbpedia:Nepal in a filter (see
Figure 18). Even better, these two dbo:locatedInArea branches
may directly connect to dbpedia:China and dbpedia:Nepal, re-
spectively (as shown in Figure 13). All the participants who
solved Task 3 basically achieved it by using one of these two
queries (with some variations), but guessing a working query
was challenging for most of them. This not an issue related
to environment, but rather a recognition of the added step of
reasoning (and comprehension of the system) needed to solve
this task.

Unhelpful endpoint errors. The SPARQL protocol, used
to communicate with SPARQL endpoints, does not give much
support to the sensible communication of server errors, so very
different errors (like a syntax error or a time-out) can be dis-
tinguished only through a non-standardized textual description
returned by the server. As an example, in Table 2 we show
the responses of different SPARQL endpoints for the same
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Figure 18. Alternative query to solve task 3.

type of error, a timeout during the execution of the query.
SparqlBlocks shows an error in place of the table of results
labelled with the truncated (not to break the user interface)
error message from the server. This is often not very helpful
to the user, like in the example shown in Figure 19 of a query
on the WikiData endpoint.

Figure 19. Query block with an error shown.

Acceptance of nonmeaningful queries. One of the main
advantages of the block-based interface is that syntax errors are
avoided. Nevertheless, the participants sometimes built queries
that either contained redundant parts or were bound to return
an empty result set, for one of two reasons:

• the syntax was accepted but it actually made no sense;
e.g. a variable not used in the query graph patterns was
used in a filter or in a block connected through an order
by connector (see for example the query in Figure 20);

• a query made sense in general terms but it did not respect
the dataset semantics; e.g. a property was used as subject
or object in a graph pattern22 (see for example the query
in Figure 21).

22That could make sense in special cases, like to query ontology meta-data,
but, in practice, it is often just an error.

Figure 20. Syntactically correct query having a variable appearing
only in the order by clause, which has no effect on the ordering.

Figure 21. Syntactically correct query in which a property appears
in the role of the object, leading to an empty result set.

10.2. Perceived Strengths
Many users saw the following as strengths of the tool.

(Phrases shown surrounded by quotation marks are actual
quotes from users23.)

“Once you get used to it, it is very intuitive.” After the
tutorial and the execution of tasks that were quite intense with
a lot of concepts to learn, the participants generally felt quite
empowered and they felt that, at that point, they were able to
solve similar problems more easily.

“Once you see the connector highlighted, you see where
you can put the block.” As previously described, participants
sometimes felt frustrated for not understanding immediately
where a block could be connected. Perhaps for that reason, the
visual feedback given when a block is close to a compatible
connector (the connector is highlighted) was much appreci-
ated.

“I enjoyed it very much!”/“I loved using this tool!” Many
participants expressed enjoyment using the tool, in accordance
with the high rate given to Use Appeal in the questionnaire.

“It may be useful for education.” Some participants
highlighted SparqlBlocks potential as an educational tool.

“Search blocks are really useful!” A participant with
previous experience with Semantic Web technologies indicated
the black-box query blocks as especially useful, possibly for

23Quotes are used to exemplify concepts expressed by multiple users (of
whom at least one of them used the given wording).
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Table 2. Timeout error response messages from different SPARQL endpoints.

Endpoint Server Status Code Text Message
DBpedia OL Virtuoso 500 SPARQL Request Failed Virtuoso S1T00 Error SR171: Transaction timed out

SPARQL query:
(SPARQL)

WikiData Sesame 500 SPARQL-QUERY: queryStr=(SPARQL)
(full Java stack trace of a QueryTimeoutException)

Linked Open Aalto Data Service Apache Fuseki 503 Query timed out Error 503: Query timed out
Fuseki - version 2.5.0 (Build date: ...)

being familiar with the problem of exploring a dataset without
prior knowledge of the used vocabularies.

10.3. Suggestions
We received the following suggestions.

To add contextual help and examples associated with the
block types and accessible from the workspace.

To add retry button (or auto-retry) for when the query
fails for (possibly temporary) connection problems. Now the
only (admittedly suboptimal) solution is to disconnect and
reconnect the query pattern stack.

Joins among queries. While it is possible to combine any
number of patterns in a query to a single endpoint, it is
not currently possible to design queries that access multiple
endpoints. It would not be difficult to introduce this exten-
sion in the user interface, considering that SPARQL supports
that feature through an optional extension called SPARQL
Federation, but we should connect to a server supporting
it. Public SPARQL endpoints like DBpedia do not usually
support SPARQL Federation.

11. Conclusions and Future Work
We have proposed SparqlBlocks as a visual language and

an interactive environment embodying a new paradigm for
querying Linked Data. SparqlBlocks is based on a novel take
on block programming: using blocks not only to program but
also to show results, which can be incorporated in incremental
design of queries. A group of users with strong computer
science background but small to no experience in querying
Linked Data were able to successfully design non trivial
queries with the tool.

At the same time, the evaluation and analysis of the use of
SparqlBlocks opens up new questions and stimulates further
experimentation in the field of Linked Data access and block
programming environments.

11.1. SparqlBlocks
The users had some issues related to some aspects of the

user interface, especially concerning the representation of
graph patterns and the usage of variables. While participants
managed anyway to effectively use the tool in a relatively
short amount of time, tackling these issues is probably critical
to lower the bar for expertise and effort required to start
using SparqlBlocks. A central point is that maintaining the

full expressiveness of SPARQL has a cost in terms of having
a complex visual language (the user can easily mix things
in legal but meaningless ways). In many cases limiting the
expressiveness may help the novice user.

11.2. SPARQL
Some issues or requests push the limits of current SPARQL

infrastructure.

Better feedback on server errors would require going
beyond the current SPARQL protocol, while in the medium
term it could be tackled by designing a layer that may interpret
the output of the most used kinds of SPARQL endpoints and
give a semantically well-defined answer.

Proposing more complex queries, for example joining
patterns from multiple endpoints, requires not just adding the
missing pieces of the full SPARQL language, but also having
on the server side a system capable of executing those complex
distributed queries in an efficient way —which is not a fully
solved problem, neither in practice nor in theory.

11.3. Block Programming
Some issues should be analysed in the context of block

programming environments.

How to best represent optional component with default
values. This concerns the trade-off between (1) offering blocks
with defaults (for example through shadow blocks) versus
(2) requiring filled connections versus (3) allowing empty
connections (with implicit defaults).

Management and visual representation of variables. In
several block programming environments, variables are all
global, thus sacrificing the principle of information hiding
in order to gain the possibility of visually interacting with
variable blocks without having to manage scopes. In some
cases, like MIT App Inventor 2, the management of variables
has been designed to permit lexically scoped variables [31].
Locally scoped variables are introduced as parameters of
functions or through a specific block that initializes a set of
local variables and encloses the instructions in which they may
be used. In SPARQL, variables are locally scoped to queries,
but in the language there is no explicit declaration of them.
Furthermore, while variables in basic graph patterns may be
novel or refer to existing variables, variables in expressions
(for filter and order by fields) should have already been
introduced in some basic graph pattern of the same query. We
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chose to keep the system simple by managing the variables
as if they were all global and leaving it to the user to deal
with them in the correct way. There is possibly room for
improvements by devising a visual representation of the scope
system of SPARQL.

Shapes and allowed connections. The recognition of avail-
able connections is paramount to the effective usage of a block
programming environment, but a complex language may have
many types (hence potentially many connection types) and
connectors that accept multiple types. Which is the “right”
trade-off in the number of different shapes? How can the UI be
augmented to further support fine-grained distinctions among
types in a way that the user would still be able to see the
potential connections at a glance? Blockly is rather conserva-
tive in having just two types of connectors. The OpenBlocks
system [32], upon which the original MIT App Inventor and
StarLogo TNG were based, had support for more connector
shapes and supported polymorphism. Some prototype systems
went to the length of supporting arbitrary complex derivative
types (like tuples or functions) by graphically composing basic
connector shapes through a set of rules [33, 34]. We chose not
to follow this line, as we were interested in first analysing the
potential of the approach for grasping the essential aspects of
SPARQL. Further experimentation will be needed to establish
the trade-off between the greater expressivity given by an
increase in the available possibilities for manipulation and
the consequent increase of cognitive load. It could also be
interesting to explore how a hierarchical system of types may
be represented through the use of different connection shapes.

Richness and organization of the toolbox. The organiza-
tion of the toolbox is paramount to user’s comprehension of
language affordances. It is not trivial to find a compromise on
the number of offered blocks. For example, blocks representing
multiple operators (e.g., the logic operator block, used for and
and or) are shown just with default one (in this case and) to
avoid overloading the toolbox. To use another operator, the
user must use a drop-down menu and change it. This was
found to be non evident to several users. So, at least for some
cases, it may be worth to show already all or most of the
options as separate blocks in the toolbox, as, for example,
MIT App Inventor does.

Extension of the SparqlBlocks’ paradigm to similar
applications. The results of the evaluation of the tool are so
far promising, so it could be interesting to extend the paradigm
to similar languages. The proposed incremental approach and
UI could potentially be applied to multiple query languages
and data models.
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Abstract Tiled Grace is a block-based programming system backed
by a conventional textual language that allows switching back and
forth between block-based and textual editing of the same code at
any time. We discuss the design choices of Tiled Grace in light of
existing research and a user experiment conducted with it. We also
examine the sorts of task preferred in each mode by users who had
the choice of editing either as blocks or as text, and find both positive
and cautionary notes for block-based programming in the results.

1. Introduction
With Tiled Grace, we aimed to produce a block-based pro-

gramming system that was fully integrated with a conventional
textual language aimed at education, Grace [1–3], to allow
learners to make the transition from blocks to text gradually
over time. At any time, a programmer can with the click of
a button switch from editing their code as blocks to editing it
as text, and back again, as often as desired and for as long as
required. Tiled Grace matches its block syntax exactly with the
syntax of the textual language to reinforce knowledge of both,
and uses animations to show the correspondence between the
two representations while transitioning. Like the textual Grace
language, Tiled Grace aims to be a guiding step for novices
who will move on to other languages or paradigms.

In this paper we explore our specific design choices made
while building Tiled Grace and elaborate on their motivation
in relation to existing work in both visual languages and
educational psychology. We reflect on those choices in ret-
rospect in light of both subsequent literature and a usability
experiment we conducted with the tool. This experiment aimed
to determine:

• whether this ability to switch views would actually be
used, or if users would merely use one or the other;

• whether the novel animated transition connecting the two
views was appreciated, or found confusing or unhelpful;

• whether the error reporting system we had created for the
tiled view was helpful, as it was entirely experimental;

• how engaged users were with the tool, as a system that
users do not enjoy will not be used;

• and any unanticipated difficulties or usage.

DOI reference number: 10.18293/VLSS2017-007

Our experiment with Tiled Grace also offers a unique op-
portunity for analysis. For the first time, programmers had
the opportunity to edit the same program as both blocks and
as text, and particularly to edit parts of the program in each
mode. We perform a new analysis of the dataset in this paper,
examining the choices and revealed preferences of the users
in the experiment, with a further goal of finding:

• which tasks users preferred to perform as text and which
as tiles;

• and how these patterns vary by the experience level of
the user.

From all of this we attempt to draw lessons for the future of
block-based programming. While we see a number of positive
signs for these languages and editors, we also find some
cautionary notes where enthusiasm may not match reality.

In the next section we briefly introduce Tiled Grace at a high
level. After that, we outline the more relevant similar systems,
and then discuss Tiled Grace’s design choices for usability and
learnability in relation to others, and where we made trade-
offs to support our goal of integrating text and blocks. We then
summarise a past usability experiment with the tool, and go on
to present a novel analysis of the actual use of each modality,
before relating and comparing our results and experience with
what has been reported by others. Finally, we attempt to draw
some lessons for block languages from both our experience in
building a hybrid system and our experimental results.

2. Tiled Grace
We will briefly introduce the Grace language generally:

Grace is a textual, object-oriented, block-structured, curly-
brace language aimed at novice programmers, primarily in
tertiary study [1]. It aims to support new programmers in the
first year or two so that they can develop the understanding
required to learn new languages for their later careers, and
includes a number of design choices intended to assist that.
In this work, we are building on Grace, and on an implemen-
tation of Grace, leveraging the existing pedagogical design
and implementation work already carried out on the textual
language.

Tiled Grace [4, 5] presents an editing environment for Grace
programs based on drag-and-drop tiles. The basic structure
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is common across drag-and-drop block-based programming
systems. The tiles for a string and variable, for example, appear
as:

Some tiles have holes in them, where another tile may be
placed. For example, a variable assignment tile has two holes:
one for the variable to be assigned to, and one for the value
to be assigned:

The holes are the empty grey rounded-rectangular areas. The
user can drag a tile inside a hole to build up their program.
Tiles can be connected together in sequence as well. To create
a variable and print its value, a var tile and a print tile can
be joined together.

A complete program and its output in progress is shown in
the Tiled Grace interface in Figure 1. The interface is divided
into three main areas: a large workspace area on the left, a
toolbox of available tiles, and text and graphical output areas
on the right.

Tiles may be dropped anywhere in the workspace pane, and
the user can construct different sub-programs in different parts
of the area. Different categories of tile can be selected from
a pop-up menu that appears when using the toolbox. At the
bottom of Figure 1 the dialect selector, run button, and other
interface controls are displayed.

The user can switch to a textual editor at any time. The
transition from tiled to textual view is shown through a smooth
animation where each tile and block of code has a continuous
visual identity throughout the transition.

First the tiles fade out to blocks of the corresponding textual
code, then the blocks glide into place in a linear textual
program, and finally the display switches to editable text. The
entire transition takes just under two seconds. When the user
chooses to switch back to tiles, the same behaviour occurs in
reverse.

Figure 2 shows this transition in progress: while editing the
same program as shown in Figure 1, the user has switched to
a textual view. First the tiles fade out to blocks of the cor-
responding syntax-highlighted textual code, while remaining
in the same physical location (frame (b)). The code blocks
then glide into place (frame (c)), finishing in a linear textual
ordering. Finally, the tiles become fully editable ordinary text,
as shown in frame (d). In this way, the relationship between
tiles and the corresponding part of the textual program is
clearly visible.

Each separate group of connected tiles is regarded as an
independent part of the program. The ordering between them
in the textual display is arbitrary, but consistent across the

lifetime of the program. The displayed text is editable if
the user wishes: they may change the source code, including
adding and removing whole lines or blocks, and then transition
back to the tiled view. When exported, a meaningful comment
is appended to the end of the program stating the coordinates
of each independent “chunk” in pixels, while the chunks are
separated from each other by blank lines; within the system the
location information is stored in memory during a text-editing
session. If a new chunk of code is added, it is assigned a
default location upon switching back to tiles.

Tiled Grace innately supports dialects, a language variation
feature of the textual Grace language [6]. Dialects can provide
new features to the language and new tiles in the toolbox, and
impose additional restrictions on what can be written. Each
module [7] of the program can use a different dialect. Different
dialects can provide drastically different sublanguages, with
their own tiles and rules, within the same overall syntax and
semantics. Because all Grace control structures are defined
as methods to begin with, a dialect can introduce its own
control structures at will and they will fit in with the rest
of the language.

Tiled Grace runs in a commodity web browser, including
both the editor and the backing compiler. It can be accessed
at http://ecs.vuw.ac.nz/~mwh/minigrace/tiled/, and works at
least in recent versions of Firefox, Chrome, and Internet
Explorer/Edge. Tiled code is converted behind the scenes to
textual Grace code, which is then compiled into JavaScript for
execution. The compiler provides a syntax-tree export that is
used to transform textual code back into tiles, or to import
new textual code.

We will discuss other features of Tiled Grace in relation to
the motivations that inspired them in the next section.

3. Existing Block Programming Systems
Several block-based programming languages and systems

are in current use, the most well-known of which is probably
Scratch [8]. We will briefly introduce the systems most rele-
vant to Tiled Grace, focusing on the aspects that relate to this
work. The design dimensions we consider interesting are:

• the role of a textual modality: is there none available,
export to another language, export to and import from
another language, switchable views, or simultaneous dis-
play?

• the sort of block positioning that it allows: freeform
layout or a fixed structure.

• when errors are reported: is it when they are introduced,
when starting to run the program, at runtime, or never?

• how errors are reported: in-place, in a list, one at a
time in a fixed place, or with a marker. (In both of
these dimensions we are interested in syntax, structure,
and type errors, rather than logical errors — the kinds
of error that a reasonably conventional textual language
might report statically).

23



Figure 1. Tiled Grace editing a small program in the “turtle graphics” dialect, currently executing

• are different types distinguished by shape, colour, re-
pulsion from incompatible locations, not at all, or some
other means?

• how are dependencies between different parts of the code
(for example, variables and their references) maintained
or indicated: not at all, with an overlay, with automated
scoped renaming, or something else?

Table 1 summarises each system we consider against each of
these dimensions. Tiled Grace has, respectively, a switchable
text view, freeform layout, errors shown both when introduced
and when run, errors displayed in place, repulsion of incom-
patible types, and an overlay showing uses and definitions of
variables and methods along with automated renaming.

3.1. Scratch
The visual side of Tiled Grace is most similar to Scratch [8],

a wholly visual drag-and-drop programming environment with
jigsaw puzzle–style pieces, aimed at novices and children.
Scratch is purely visual: there is no textual representation
of Scratch code at all (although its blocks are all dependent
on textual labels). A key boon of Scratch is its immediate
graphical microworld. A student can instantly see the effects
of running a piece of code, live in front of them. Code can be
modified during execution with instant feedback.

Scratch has been very successful in driving engagement,
particularly with children. New users who might never have

considered programming a computer take to it quickly and
begin exploratory programming with little prompting. We ob-
served this engagement ourselves while working with Scratch
in an outreach programme to a local school, which led to the
conception of Tiled Grace as a way to gain this engagement
within a more complete language. Scratch has also proven
useful for a variety of other purposes, including driving so-
cial interaction between children, promoting storytelling, and
teaching music; we did not focus on these areas for Tiled
Grace and will not address them further in this paper.

Scratch has freeform positioning of blocks anywhere in the
workspace, and uses different block shapes to distinguish types
of value. Scratch does not regard any program as erroneous,
and will attempt to execute any program, skipping over miss-
ing or invalid parts. There is no innate textual form of Scratch,
though a debugging export of an entire program is available
by a hidden option.

3.2. Squeak Etoys

Etoys is a tile-based programming system built on the
Squeak Smalltalk system [9]. Etoys focuses on exploratory
learning in general. Textual code equivalent, but not iden-
tical, to the tiled code can be exported and executed. Tiled
code is always valid, with type errors prevented from being
constructed, while erroneous textual code cannot be activated.
Tiles corresponding to abilities of each item in the world are
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(a) (b)

(c) (d)

Figure 2. Frames of the animated transition from tiled to textual view. (a) Tiled. (b) Fade backgrounds and highlight syntax. (c) Glide
tiles towards their positions in the text. (d) Switch to an actual text editor in-place. Transitioning from textual to tiled view shows the same
intermediate states in reverse. The transition from tiles to code, and the movement of code, is smoothly animated.

accessible through a menu on that item, rather than a general
broad menu. An interesting aspect of Etoys is that code tiles
exist within the same world as user objects, and tiles can be
created representing the physical display of blocks of code.
These tiles can be used like any other to manipulate the display
of the code.

3.3. Alice
Alice [10] is similarly microworld-driven, but aimed at

a slightly older audience. Alice has objects in the three-

dimensional microworld that are also objects in the object-
orientation sense, with a primarily event-driven programming
model with common structured-programming features as well.
Alice makes heavier use of menus than Scratch, but also has
a higher degree of enforced structure. These menus provide
on-demand exposure of relevant possibilities and encourage
a different style of experimental programming than Scratch’s
toolbox.

Alice has structured positioning of blocks, with (subtle)
shape indicators for some types. Alice supports exporting to
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Table 1. Many existing block programming systems laid out according to their design elements relating to each design dimension.

Language Text Positioning When errors Where errors Types Dependencies
Scratch None Freeform Never n/a Shape Renaming (some)
Etoys Export Freeform Never n/a Repulsion Renaming
Alice Export Structured Intro., start One, list Shape Renaming

Blockly Export Freeform Start Varies Repulsion None
App Inventor None Freeform Intro., start Marker Repulsion Renaming
Pencil Code Switchable Structured Start One No None
BlockEditor Export/Import Structured Start One, list Shape (some) None

GP Export/Import Freeform Never n/a Shape Renaming
Calico Jigsaw Export Freeform Runtime One No None
TouchDevelop None Structured Intro. One Repulsion Renaming

Greenfoot Read-only Structured Intro. Marker n/a None
Tiled Grace Switchable Freeform Intro., start In-place Repulsion Overlay, renaming

Java and reports many errors upon introduction, and some
when starting the program.

3.4. Blockly
Blockly [11] is very similar in ethos to Scratch, with

freeform positioning. Blockly runs in a web browser and
incorporates language variants (what we call dialects), but
in mimicking Scratch also has no editable textual format.
Blockly’s goal is to support developers embedding a visual
language into other systems, both educational and otherwise.

Blockly supports exporting code to a number of languages,
but these exports are not bijective. There is no explicit indi-
cation of which parts of the visual representation correspond
to which parts of the textual representation. Because Blockly
is designed for embedding, a range of different behaviours
can be provided by the embedder, but repulsion from invalid
locations is built in.

3.5. App Inventor
App Inventor [12, 13] is one of a number of Blockly

clients, aimed at teaching. App Inventor was extended with
a textual language, TAIL, semantically equivalent to its block
language [14, 15]. An aspect of the TAIL integration that most
systems do not match is the ability to embed a portion of
textual code within the block view, as a block containing the
text. This feature of TAIL is one that would be particularly
useful in systems when there are parts of the textual language
that the blocks cannot express, but came after our work so we
did not include it.

As well as TAIL, a Python export for App Inventor has
been proposed [16]. Neither is currently in the production
release. App Inventor marks erroneous blocks with a persistent
indicator when the error is detected, and the user can inspect
the block individually for an error report. It has no tracking
of interdependencies beyond renaming variables.

3.6. Droplet and Pencil Code
Droplet [17, 18] and the closely-related Pencil Code [19]

slightly postdate the genesis of Tiled Grace, but also attempt

to bridge blocks and text. Pencil Code concentrates on straight-
line programs in a Logo-like turtle graphics system and simple
audio/drawing programs, and supports editing large subsets of
both CoffeeScript and JavaScript as blocks and text, with both
block and text editing for each language.

Droplet introduced an animated transition that parallels
Tiled Grace’s and is now part of mainline Pencil Code with
many users. Droplet is a general library supporting any lan-
guage with an appropriate adapter, but the main use is in
Pencil Code with CoffeeScript. Text is treated as the primary
representation in Droplet, and it retains complete or nearly-
complete information from the source, including comments
and layout (which Tiled Grace does not only due to technical
limitations of the underlying compiler). Were we creating
Tiled Grace now, we would likely build on the Droplet library
instead of a bespoke system.

Pencil Code reports some errors upon trying to run the
program by way of a popup. Types are not indicated in any
way. Blocks are positioned in a structured fashion, and no
dependencies are tracked. Switching between block and textual
view is possible at any time, except when textual syntax errors
exist.

3.7. BlockEditor

Matsuzawa et al [20] built BlockEditor, an editor for a
visual language called Block that can save the program to
textual Java. The Java code can be edited and automatically
reimported into BlockEditor. In this way a learner can move
between the two languages at will, continuing with the same
code. The Block visual language is not exactly the same as
the Java textual language, but parallels the structure closely
enough for a bijection to exist for the programs in an introduc-
tory course. An experiment over a first programming course
for non-majors found that users did use both modes, with the
rate of Block use trending downwards and Java upwards as a
course progressed, and that higher usage of the visual mode
corresponded with lower self-efficacy.

BlockEditor allows exporting to Java, editing, and re-
importing the code. The block and textual code looks dis-
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similar, but is semantically equivalent. Shape is used to mark
some types of sockets.

3.8. GP
GP is a general-purpose blocks programming language

intending to be useful for casual programmers other than
children [21]. GP is principally block-based (building on
Snap! [22]), but experimentally has had an editable text mode
(exposing the underlying LISP-like language), highly con-
densed blocks appearing as text, and text-based insertion of
blocks. The text-like blocks were found to be less jarring
(though less powerful) than exposing export and import of
the underlying data structure had been. Permitting not only
animation but the ability to select intermediate points exposes
the text-block transition to a further degree than other systems,
including Tiled Grace.

3.9. Calico Jigsaw
Calico [23] is a multi-language IDE for introductory pro-

gramming, which includes a visual language called Jigsaw.
Jigsaw uses puzzle pieces and drag-and-drop, and the Calico
system enables exporting the program to other textual lan-
guages, primarily Python. The Jigsaw syntax is distinct from
any textual language and export is to a text file. Jigsaw allows
a degree of freeform positioning of blocks, and reports errors
primarily at run time, with the triggering block marked.

3.10. TouchDevelop
TouchDevelop [24] integrates an essentially textual lan-

guage with an IDE aimed at touch-screen usage, rendering
the program as large blocks. The IDE avoids most use of
textual input by having the user manipulate the syntax tree
itself: the user touches where they want to change and the IDE
presents them with a list of options they can put there. When
the programmer adds a new element the system will prompt
them to fill in any required arguments, like the condition of a
loop. While the syntax is reasonably conventional, there is no
direct textual form of TouchDevelop code, and some aspects,
such as comments, are shown only by typographical features.
Editing always corresponds essentially to textual insertion or
deletion. TouchDevelop has fully structured positioning and
enforces that the program is well-formed whenever possible.

3.11. Greenfoot and Stride
Greenfoot is an introductory programming system with a

two-dimensional microworld, which has recently been ex-
tended with a “frame-based” editor [25, 26]. Like a block sys-
tem, Greenfoot’s frame-based editor presents hierarchically-
related elements of the code as nested indivisible oblongs
with slots for subsidiary elements, but like a textual language
interaction and input is principally with the keyboard. Its Stride
language reuses the concepts of Java and uses textual labels
and structure closely matching Java syntax.

The programmer manipulates the syntax tree at the level
of individual nodes using single-letter keyboard shortcuts, but

some slots use free text entry even for structured elements
(such as method references or loop conditions), so Stride is a
hybrid structured and unstructured editor. These unstructured
fields are the only place that syntactic errors can be introduced,
other than empty mandatory fields. An individual module is
always a well-formed class down to some subsidiary point.

A Java view of the module can be shown at any time,
including while the program is in an erroneous state. This
view is not editable, but inserts the necessary braces, com-
ment markers, and other syntactic structure, while removing
additional labels present in the frame view, with an animated
transition preserving the identity of the elements common to
both views.

3.12. Other systems
A number of other systems, or experimental systems, have

incorporated some level of textual code alongside blocks.
These include a simultaneous-display version of Snap! [27]
showing JavaScript code (not part of mainline Snap! develop-
ment), and systems for defining extension blocks using some
host textual language [22, 28, 29]. We discuss the Snap! ex-
tension briefly below, but consider merely-extensible systems
out of scope for this paper.

4. Designing Tiled Grace
Why build Tiled Grace when Scratch, Alice, and similar

systems already exist? Our design goal for Tiled Grace was
to provide the engagement and lessened syntactic burden of
these existing systems, while introducing the concepts of a
textual language at the same time so that the user could
transition into it at their own pace, in accordance with edu-
cational psychology principles. We built on top of an existing
conventional textual language aimed at education in order to
leverage existing education design work, rather than reinvent-
ing it, building an interface for editing that textual code rather
than a new language. In this section we break down some
motivating aspects of our design, particularly in relation to
other languages and approaches we built on or steered away
from.

4.1. Migration
A key goal in Tiled Grace was to enable its own obsoles-

cence for each user in their own time, where they could move
on to the textual paradigm when ready and with the support
to do so successfully. Building on a general-purpose language
ensured that there was no functional limitation in the tiled
view (as contrasted with microworld-focused languages), but
did not alone ensure that it would be feasible to move on.
Ultimately, Tiled Grace aimed to ease beginning with Grace,
to match the Grace language’s goal of easing beginning with
programming, in both cases as an initial step only.

A well-reported problem with moving on from visual to
textual languages [30], and moving between languages early
in learning in general, is that learners find it difficult to connect
analogous concepts in one language to the other. In particular,

27



it is known from both educational psychology in general,
and computer science education specifically, that transitioning
between languages early in learning is unhelpful [31], or
indeed any attempted transfer of learning at an early stage
without very careful structuring [32, 33].

For learners to achieve transfer they must be taught the
concepts in a fashion that facilitates transfer [32]. Without
such teaching the knowledge tends to be inert: it can be applied
within its original context, but learners will not generalise from
that context to apply their knowledge elsewhere. Perkins and
Martin found that students learning to program would learn
language constructs inertly, and so had difficulty applying their
knowledge to the act of programming, notwithstanding that
the distance of transfer is minimal in this case [34], while
Dyck and Mayer found that without transfer-focused teaching
learners of BASIC would master the syntax of the language,
but struggle more with semantics than those taught with trans-
fer [35]. An assumption in much teaching is that transfer to
similar domains will occur automatically, but research has not
borne this assumption out in practice [32], instead finding that
instruction must be tailored to assist transfer; in the literature,
this tailoring to target explicit transfer is called bridging [35–
37]

These ideas and experiences were a strong influence on our
design of Tiled Grace. In particular, the animated transition
between visual and textual representation aims to assist bridg-
ing by demonstrating the exact parallel between the two sides.
Similarly, we made the block structure match the syntax of
the textual language, and even display the relevant syntax in-
place on each tile. In this way the user was always seeing
the textual syntax, even while editing blocks, and would gain
some familiarity with what to expect in text. Using text as the
primary representation also ensured a convenient interchange
format for both whole and partial programs.

Restricting ourselves to an exact match with the textual syn-
tax limited what we could do in the blocks. Unlike other visual
block-based languages we could not use additional layout or
components within a single tile to make the block language
simpler (for example, using multiple successive holes without
intervening syntax, adding extra labels, or physically offsetting
or aligning some fields to distinguish them with no other
syntax), because that would break the direct correspondence
with the textual syntax we did not control. This is one area
where our goal of integrating both worlds has made the system
weaker in respect of one approach or the other than a “pure”
block or text language.

Given all of the above, there is a fair question in the
air — why switch to textual languages at all? Aside from
the dearth of professional block languages for those students
who would like a job in future, a key issue in existing
block languages is that using them is exhausting, having high
“viscosity” [13, 38] — the difficulty of making a local change.
Even reading and understanding a complex program with
many nested blocks can be difficult [14]. While designing
Tiled Grace we knew from our own experience that as we had
come to know the system better we had found the drag-and-

drop interface of Scratch increasingly tiresome to use. Moving
to the toolbox, dragging a tile out, switching to a different
pane, finding the next tile, and so on, becomes repetitive and
frustrating over time. Novice users, however, do not find this:
when everything is new, the impact of retrieving each tile is
unnoticed next to the difficulty of the concepts being dealt
with. The toolbox is an excellent discovery mechanism for
novices, the ease of getting something going is a significant
driver of engagement, and the lack of syntax errors removes a
major confound faced by novices. Novices are eventually no
longer quite so novice, and so may want to move on.

A commonly-repeated maxim is that a good programmer
can easily learn a new language. Novices are not good pro-
grammers, however, and a course structure predicated on
making a language transition will likely run into trouble.
Nonetheless, introductory tertiary courses in Scratch and Alice
move on to other languages early, often within the first course,
as programs become too complex for such languages. This
has implications for the design of educational languages more
generally as well: because an educational language explicitly
expects learners to move on to other languages afterwards, the
language must support the learner for long enough to allow
them to build sufficient competence that they can successfully
transfer their skills to another language.

4.2. Event versus Process
One issue with language transitions is that they are es-

sentially “one-way” events: the learner must apply what they
know about the earlier language to the later, but movement in
the other direction is restricted. This is a problem not only for
transferring concepts, but because this “event” model makes
the two sides seem qualitatively different and opposed.

Powers, Ecott, and Hirshfield found that students learning
Alice and a textual language in the same course frequently
felt that Alice was not a “real” language [30]. Students who
struggled with the textual-language part of the course felt that
what they had been doing in Alice “didn’t count” or was “too
easy”, that textual code was “real programming” and were
inclined towards believing that they were not actually capable
of programming; this inclination is harmful in itself. Lewis et
al found that more students rated a picture of random green-
on-black symbols from the film The Matrix as “definitely”
or “somewhat like” programming than an image of the Lego
Mindstorms programming environment (a colourful drag-and-
drop system), despite the fact that those students had been
learning Scratch [39, 40]. These examples are just some of the
motivating concerns we had about visual-textual transitions
when setting out to design Tiled Grace.

By contrast with approaches moving between multiple lan-
guages supporting a single paradigm each, Tiled Grace has
a deliberately permeable barrier: a user can use the visual
language, the textual language, and the visual language again,
even within the same program if desired. As in BlockEdi-
tor [20], permitting both views avoids the transition event
altogether, so that moving from blocks to text becomes a
process rather than an event. A programmer can start to move
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Figure 3. Overlaid dependency indicators for variables, methods, and
inherited fields.

to text as early as the first day, and draw out the process as
long as necessary until they are truly comfortable working
with textual code.

Throughout the process, both modes, and all of their past
programs, remain available to the programmer. At all times,
the user can see that what they were doing with blocks is ex-
actly the same as what they are doing with text (or, indeed, the
other way around). Both modalities clearly “count” as much
as the other, and they are clearly both programming. Allowing
movement in both directions necessitated some further trade-
offs (particularly that the programmer can only switch views
when there are no static errors in their program), but we con-
sidered it appropriate to the goal of the language. This textual-
tiled combination was our original grounding conception for
Tiled Grace.

4.3. Relationships and Dependencies

In a block language, and particularly one with arbitrary
layout like Tiled Grace, it is possible for the declarations
and uses of variables and methods to be dispersed around
the screen where they may not be obvious, which could lead
the user to break their program through being unaware of the
dependencies between parts of the code. To preëmpt these in-
cidences, we included two overlays to show the dependencies
between these items.

The top left of Figure 3 shows the mouse pointer hovering
over a variable declaration, with two uses of that variable
highlighted. Similarly, hovering over a variable use site marks
the declaration site. These indications occur anywhere in the
program, for variables, constants, and method parameters. The
top right shows that the “radius” field has been inherited from
“circle” through a similar highlighting (the inheritance system
of the underlying Grace language is object-based and blurs
fields and variables [41]).

Figure 4. Composite image of multiple overlays at once in an
alternative design.

Figure 5. Marking a static scope error in the program where a
variable reference has been moved out of its defined context.

The bottom of the figure shows an unrelated method decla-
ration, circle, with the mouse hovering over it. The overlay
draws a line between the declaration and each use site of the
method, wherever it is in the program. Again, if the user hovers
the cursor over a call site, the line will indicate the declaration.

These indications are especially important to aid new users
unfamiliar with the language or libraries. In our experiment,
we would have people use the system with minimal training,
and it was valuable that they should know the relationships be-
tween different parts of the task programs they were given. We
considered an alternative dependency indicator, in Figure 4,
that used lines for every indicator and showed all applicable
dependencies at once. We found this overlay too busy and
shifted to using the highlights from Figure 3 for everything
but methods, and stopped showing possible assignment sites
of variables altogether. We are not aware of a block language
that successfully shows all of these dependencies, but we
were inspired by the DrRacket editor for the textual Racket
language [42] in the alternative approach.

4.4. Errors
While Tiled Grace was mostly modelled after Scratch, a

key difference between Tiled Grace and Scratch, but much
less so between, say, Tiled Grace and Alice, is that we made
especial effort to provide error detection and reporting in the
visual editor [5]. While in many block languages all programs
can run regardless of missing or broken parts, we require that
the program be well-formed to allow it to run, and prevent
a wide range of errors from entering the program in the first
place. To a large extent this choice is forced upon us by the
need to match with a textual language, but we also believe
that reporting errors early and often is beneficial.
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Figure 6. The display of a simple type error the user is making,
where they try to place a string tile somewhere that only numbers
are permitted.

While block-based editing prevents most syntax errors, the
user may still omit filling in required components — for ex-
ample, not specifying a variable name or leaving the hole on
one side of an operator empty — or invalidate the program
in other ways by moving a reference to a variable outside its
scope or filling in an unsuitable value. We included a persistent
graphical indicator of the current validity of the program in the
interface: when it turns red, the program is somehow invalid.
The user may hover over it to highlight all existing errors,
which are labelled in situ with their cause (for example, an
empty hole may have the message “Something needs to go in
here”). These error sites are shown by desaturating all of the
code area except the error sites, and overlaying an associated
error message at the site, as seen in Figure 5. We investigated
a number of approaches to indicating static errors, including
overlaid arrows, persistent adjacent markers as used in App
Inventor 2 [13], and a visible list of errors, but settled on this
approach as a balance of space usage and clarity. The locality
of error reporting and error messages is commonly better than
is achieved in even advanced IDEs for conventional textual
languages, which we feel is a key advantage that block-based
languages can have.

Similarly, while type checking is commonly recognised as
helpful in textual languages, translating that across to visual
languages is challenging. We wanted to catch errors as early
as possible, so it was important that we be able to detect and
report type errors where possible, in a way that the user would
see and understand.

We chose to use a variant on our error overlay approach to
report errors as the user tries to perform the action that would
cause an error, while also preventing the user from doing so.
Any hole can be annotated (in the implementation) with the
types it will accept. Any tile can be similarly annotated with
the type of the object it represents. When the two do not match,
the tile placement is not permitted. Most block languages have
some variation of this “repulsion” behaviour for at least some
of their tiles, but we hope that the simultaneous overlay makes
clear why the tile cannot be placed where desired.

For example, a string tile is annotated with the type “String”,
and both holes in a + tile are annotated as accepting only
“Number”. When the programmer tries to place one into the
other, as in Figure 6, the hole is marked in pink and an error
message displayed nearby: the user will not be able to drop the
tile into the hole. Type errors are in this way prevented from
being introduced into the program in the first place, but the
user also understands why they were not able to do what they

wanted. This sort of live feedback is another aspect of block
languages that is both clearly useful and difficult to replicate
in conventional textual languages.

4.5. Shapes
We thought it would be helpful to indicate to users the

appropriate placement of tiles before they move them. Scratch
partially achieves this effect through its “jigsaw puzzle” pieces:
holes and tiles of different types and roles have different
physical shapes, so a boolean constant or expression will not
fit into a numeric expression. While immediately understand-
able, the approach has flaws, notably that there is a limited
range of sensible shapes that can be readily distinguished and
consequential limit on the number of types that can be in
the system. As well, “multi-type” holes are very difficult: in
Scratch it is not possible to have an array of booleans, only
of its combined string-number type. These constrictions make
this approach problematic to implement in Grace, as it is a
language with many extensible mostly-structural [43] types,
and several places that can hold variables of any type (for
example, variable declarations and equality tests).

Scratch uses shapes for both types and some grammatical
categories, as do a number of other block languages: some
blocks can only appear at the start of a stack (rounded top),
some are statements (notched), and some are values (rounded).
Tiled Grace does not do this: given the underlying language,
every node can be legitimately adjacent to any other, and the
only node that can never appear in any kind of value position
is a method declaration, while variable declarations can appear
in method bodies (which are expressions) but not some other
expression sites. For most nodes, it is their (return) type that
would limit their possible locations, and this would provide the
same effect as grammatical restrictions for these nodes. The
text-as-primary philosophy of Tiled Grace means that a wide
range of possible programs must be representable, particularly
given that dialects may extend or replace even basic control
structures.

We considered colour-coding types, such that our any-
type holes would be a neutral colour, while strings, num-
bers, booleans, other objects, and dialect definitions would
have their own colours which could be matched on both tile
and hole. Similarly to using shapes, however, the number of
readily-distinguishable colours is a limit on the number of
types that can exist, particularly if user-defined types (such as
those of custom objects or classes) are possible.

Other block-based systems not aimed at conventional pro-
gramming, such as Lerner et al’s Polymorphic Blocks sys-
tem [44] and Vasek’s TypeBlocks [45], face some similar ob-
stacles. Polymorphic Blocks uses different shapes to represent
different kinds of entity, but its equivalent of our holes, “ports”,
behave differently. A generic, untyped port is rectangular, but
it may have connected ports elsewhere, each set of which
is highlighted in the same colour. When a shaped item is
connected to one of these ports, the matching ports all take
on the same shape. Similarly to our animated transitions,
Polymorphic Blocks animates each new shape moving from
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source to destination. TypeBlocks has a similar philosophy
with different shapes and entities.

Polymorphic Blocks supports generic parametric polymor-
phism in this way, but does not (yet) address the proliferation
of shapes. Within the user experiment Lerner et al conducted,
complex shapes are created only by nesting the small number
of base shapes inside one another, with scaling down when
required. Conceivably some version of this scaling can be
applied more broadly, but we find it difficult to imagine
applying it to complex object types. Designing Tiled Grace,
and observing other work subsequently, has led us to the view
that block languages must make a (fairly early) choice: use
jigsaw-puzzle shapes and have a very restricted number of
types, or use some sort of feedback during an attempted error
but allow unbounded type construction. Neither approach is
innately better or worse in general, but depends on the intended
application domain of the language. Nonetheless, it is a degree
of fragmentation of approach that we would have preferred to
avoid.

5. Experiment
We ran a usability experiment trialling Tiled Grace with 33

participants [5]. In this section we describe the procedure of
the experiment and summarise the results that are relevant to
this paper. An anonymised dataset from the experiment was
published [46], and in Section 6 we perform a new analysis
of published instrumentation data from the experiment to
examine how participants used the different editing modalities.

Participants were primarily students enrolled in early under-
graduate Java courses in the School of Engineering and Com-
puter Science at Victoria University of Wellington, selected so
that they would have some existing familiarity with the idea
of programming. This experiment focussed on usability and
engagement, rather than learning, so true novices were not
considered suitable subjects at this stage. Studying learning
would require pedagogical studies of textual Grace to have
been completed already in order to distinguish the effect of
Tiled Grace, and we were mostly interested in whether the
system design was practical at this point. The experimental
design was guided by some key questions we wished to answer
(as well as by practical considerations, particularly timing).
We wished to find out whether users found the ability to
switch views useful, and also whether they appreciated the
explicit animation connecting the two, a particular novelty of
our approach. We wanted to see whether the error reporting
and type checking we had built was useful to users. As a tool
that users do not enjoy will not be used, we wanted to measure
engagement. Finally, we wanted users to explore different parts
of the system so we could discover any unanticipated problems
or successes.

The experiment took place in March–April 2014. Partici-
pants were asked to use Tiled Grace to write, modify, correct,
and describe programs, while we measured their use of differ-
ent features of the system. Participants also completed ques-
tionnaires about themselves and their use of the system. This

experiment was approved by the Human Ethics Committee of
Victoria University of Wellington.

The experiment focused on collecting data about usability,
engagement, use of the various features, and user behaviour in
this environment. We will first summarise relevant results that
feed into our thoughts on the design of the system and of block
programming systems here; for further details of these results,
and other results from the experiment that we will not rely on
here, see the original study [5, 47]. In Section 6 we present
a novel analysis of people’s revealed preferences for different
modalities and different tasks, analysing the published data set
from the same experiment.

5.1. Procedure
Each participant first completed a pre-questionnaire about

themselves before being given a brief introduction to the
system. The experimental system was instrumented and all
interactions recorded. There were a total of six tasks in the
body of the experiment, presented one at a time by the
experimental system:

Task Initial Description
0 Tiled Warmup – discarded
1 Tiled Change Fibonacci to factorial
2 Tiled Correct errors in this program
3 Tiled Swap behaviours of two objects
4 Text Describe program without running
5 Tiled No specific goal – finish at will
The tasks were chosen to cause every participant to en-

counter both views and the error reporting at least once, and
to have them both understand and modify code. Task 5 was
intended to measure implicit engagement, giving no set task
but telling participants that they could continue to use the
system if they wished, and move on to the post-questionnaire
when ready.

5.2. Summary
We will briefly summarise relevant results from the exper-

iment [5, 47]:

• Participants showed high levels of engagement on multi-
ple metrics, including implicit engagement with the sys-
tem once tasks were complete and Likert-scale feedback
on the post-questionnaire.

• The ability to switch views was widely used, with the
median participant switching six or more times and 75%
at least four.

• One quarter of participants spent more than half their
time in text mode, and one half of them spent less than
a third of their time in text mode.

• More-experienced participants viewed the system less
favourably than less-experienced participants, as shown
in Figure 7.

• The error reporting overlay was the aspect most often
mentioned positively unprompted, by one third of partic-
ipants.
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Figure 7. Participants’ agreement with “The system was fun to use”,
one of a suite of engagement metrics in the experiment, split in half by
a metric of experience relating to past programming and technological
usage.

• Using both views in combination was also identified as
helpful to understanding, mentioned by 9 of 33 partici-
pants and used by more.

• Many users found drag-and-drop frustrating, 40% men-
tioning it unprompted, and around 15% of participants
had debilitating difficulty completing tasks with drag and
drop.

• Most users did not switch to the tiled view in task 4,
which only asked them to comprehend and describe the
code.

This last point was not what had been expected while
planning the tasks. Further analysis showed that of those 15
who did switch, half used tiles for more than 80% of the time
spent on the task, and half for 35% or less, with nobody in
between, and that while more-experienced users were more
likely to switch, they were equally likely to be in either of
those two groups.

This divergence of approach for a simple comprehension
task suggested a difference in underlying preferences of
modality between people, and led us to conduct the novel
analysis presented in the next section, of how participants
actually used each view during the editing tasks.

6. Preferred Modalities
The experiment with Tiled Grace provided a unique op-

portunity to examine which modality — blocks or text — users
preferred for particular tasks. Spurred by discussions at the
Blocks & Beyond workshop in 2015, we conducted an ex-
ploratory analysis of the collected data from the original
experiment, which is publicly available [46], to see what trends
might exist in the use of each mode.

We caution that, because of the overall sample size and the
nature of breaking it down into further subgroups, these trends
can only be suggestive of future research avenues. We did not
have any particular hypothesis about what we might find, but
these results will provide hypotheses for future research.

We focused on two areas specifically. First, we collected all
changes made in “short” sessions in the tiled mode, which
we defined as those logging ten non-automated events or
fewer. We take these short sessions as representative of the
user electing to perform specific actions in the tiled mode
rather than as text. Secondly, we examined all text-editing
sessions. In part, that is a technical limitation — unlike for the
tiled mode, text operations were not discretely logged, only
snapshots of the code — but we found it acceptable because
text was not the default mode for any of the analysed tasks, so
any use of the text mode indicated a deliberate choice by the
user. We considered analysing all tiled sessions as well, but
large sessions inevitably involve assembling whole programs
and are not informative for this kind of analysis, as they reduce
the measurements to counting the number of drags, new tiles,
and so on, that are required to complete the tasks. As a result,
however, some text sessions are much longer in wall-clock
time than a short tiled session could reasonably be, and it is
possible that more complex operations can be performed in
them. A larger study might be able to tease out more detail
from such data, and this exploratory analysis may suggest
avenues to focus on. No participant spent all of their time
on a task in the text view, while several spent all of their time
in the tiled view. In both cases, we did not include tasks 0
(warmup) or 4 (comprehension only) in the analysis.

6.1. Editing as Text
We manually coded all 83 text-editing sessions by compar-

ing the code before and after. Where the user made changes,
and then undid them either themselves or through using our
revert-changes option after a failed compilation, we recorded
that fact mechanically.

Each session could be assigned multiple codes if more
than one operation occurred during the session, but ancillary
modifications as part of a broader code were not included (for
example, “cut and paste” does not entail “delete”). A “before”
and “after” snapshot of the code was mechanically obtained
for each session and the two were compared by hand. The first
author assigned each change a code or codes, in consultation
with a colleague, after a first pass identifying candidate codes
such that all present modifications were covered by a code.
The initial set of candidate codes was taken from the codes

32



Table 2. Proportions and frequencies of codes of text-editing ses-
sions. Each session could be assigned more than one code. Exp
indicates the proportion of users in this code who were in the more-
experienced half of the sample. 53% of all text sessions resulting in
changes were by more-experienced users.

Freq. Code Prop. Exp.
39 No change 47% 57%
4 Accepted offer to revert 5% 100%
4 Made and undid own changes 5% 67%

10 Change value of string/number 12% 57%
8 Cut and paste 10% 71%
8 Assemble complex code 10% 57%
8 Delete code 10% 43%
6 Change operator 7% 20%
6 Copy and paste 7% 83%
5 Subvert tiled error checking 6% 50%
3 Rename a variable 4% 33%

established for tiled sessions in the next section, and extended
for text-only operations. Codes for operations that could only
exist in tiles, such as drags, were also deleted.

47% of all text-editing sessions (39) made no change to
the code, and seem to have been “just looking”. We had
earlier hypothesised that users may have found the ability
to look at the code in two ways useful simply to break the
monotony and to get an overview of the code, which we
meant primarily as users switching from text to tiles to see
the structure manifested graphically, but it appears that this
may have been the case in both directions. This result may be
a point in favour of “dual view” visual languages that display
text and a visualisation simultaneously. 21 of 33 users (64%)
had at least one empty text session.

43% of all text-editing sessions (36) had modified the code
at the end. 15 of 33 users (45%) had at least one such session.
The remainder of text sessions undid the changes they had
made in one way or another. Table 2 shows the frequency and
proportion in each code. Sessions may be assigned multiple
codes.

The single most common modification was to change the
value of a string or a number. Making such a change in
the tiled view is among the easiest operations to perform
as tiles, so switching to text to perform it seems a very
deliberate choice. Most commonly, participants were making
multiple such modifications at once, which may suggest a
slight preference for textual interaction for repeated similar
tasks.

The second most common operations were cut and paste,
deleting code, and assembling complex code, in a three-way
tie. By assembling complex code we mean producing a mod-
ification that would involve multiple drags and drops into
holes. Cut and paste is exactly the operation that dragging
and dropping tiles performs, so switching to text to perform it
is not an obvious advantage. Deletion is also supported by the
tiled interface, but deleting a single line from within a block
of code was likely easier as text.

We believe that changing operators is an artefact of our
implementation, rather than a meaningful result. The system
sometimes interpreted attempts to select a different operator
in an arithmetic tile as very short drag-and-drop sequences,
which was a problem noted in the experimental results.

The most interesting task people performed in text mode
was subverting tiled error checking. Although rare, it appears
from subsequent analysis of the context that users frustrated
with being unable to make logical, structural, or type errors
in the visual interface switched to text in order to introduce
the code they wanted (for example, adding two strings). This
highlights an asymmetry in our system: the text and visual
editors enforce slightly different rules on their code, which
may have led to confusion. On switching back to tiles, these
programs would have immediately reported errors.

6.2. Editing as Tiles
We categorised short and long tiled-editing sessions me-

chanically, discarding the long ones. Short sessions had ten
or fewer logged interaction events. We also discarded short
sessions at the beginning of Question 2, as this question
presented a broken program that required a small degree of
fixing before it was possible to switch views, and empty
sessions at the end of tasks. Following this, 30% of all tiled
sessions (70/234) were short.

37% of all short tiled-editing sessions (26) performed no
operations at all, and seem to have been “just looking”. These
users may be viewing the structure of their textual program
with a visualisation to help them to understand what they were
doing. 12 of 33 users (36%) had one or more tiled sessions
with no modifications.

The remaining 44 sessions performed some operation. In
contrast to the text sessions, we also recorded interactions with
the system that did not cause modifications to the program (no
such interactions were available in text mode). Each session
was coded for each operation that occurred within it, so
some sessions were coded in multiple categories. Final coding
was performed mechanically, after iterated manual inspection
of uncoded segments created codes and rules to mechanise
them. Table 3 shows the proportions of these sessions in each
category. 19 of 33 users (58%) had one or more non-empty
sessions.

As for text editing, the single most common operation to
switch to tiled view to perform is changing the value of
a string or number tile. It appears that this innocuous, but
ubiquitous, operation is strongly polarising: it is a task that
people will both switch to text to perform, and switch to tiles
to perform.

The second most common operation is to drag a single
block into a hole. This operation corresponds to textual cut-
and-paste, moving code from one place to another.

Switching panes was counted if it occurred two or more
times in combination with other operations other than creating
a new tile, or was the only operation that occurred in the
session. These sessions indicate users looking through the
available functions to find the one they wanted, and are likely
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Table 3. Frequencies and proportions of short tiled-editing sessions
in each category. Exp indicates the proportion of users in this code
who were in the more-experienced half of the sample. 37% of all
non-empty short tiled sessions were by more-experienced users.

Freq. Code Prop. Exp.
26 No change 37% 42%
13 Change value of string/number 19% 36%
9 Drag one block into a hole 13% 38%
7 Switch panes in toolbox 10% 67%
5 Meaningless drag 7% 50%
5 Rename a variable 7% 60%
3 See variables in scope 4% 33%
3 Assemble complex code 4% 0%
3 Fix code broken in text mode 4% 33%
1 Append one block to another 1% 0%
0 Delete code 0% 0%
0 Create new tile from toolbox 0% 0%

to be users primarily using text who wanted to know which
methods were available. Some “no change” sessions may
reflect the same use. The provision of a similar toolbox in
the text mode, as in the work of Price & Barnes [48], would
likely avoid these sessions.

Assembling complex code was naturally difficult within the
restriction of a short session (measured in interaction events).
The incidence of this code may not be informative.

Zero short sessions included dragging a tile out of the
toolbox into the workspace.

6.3. Summary
Modifying the value of a string or number was the single-

most common task performed in both modalities, in both cases
commonly as the only operation performed in the session.
This suggests to us that users have divergent views on the
appropriate way to perform this action when given the choice,
but we have no hypothesis as to why. We cross-referenced
these codes with the original experiment’s division of par-
ticipants into more- and less-experienced halves; 62% (8/13)
of such tiled modifications were by less-experienced users,
compared with 40% (4/10) of the textual modifications. These
proportions are roughly in line with the relative usage of the
modes by each group found in the original experiment. There
is an evident difference, but neither is overwhelming and given
the sub-sample size nothing definitive can be said.

A plurality of sessions in both modes were empty, where
the user performed no actions and simply looked at their code.
These sessions were common among both more- and less-
experienced users. We take this as partial validation of the
hypothesis put forth previously [5, 47] that simply having two
drastically different views available is found useful in itself.

Participants attempted to use the other view to work around
limitations of the principal view they were using, for both good
and ill. The interaction with operator tiles was a flawed design,
and many users used the text view to make modifications they
had difficulty with in the tiles, which was a positive use of the

functionality. The enhanced error checking possible in the tiled
view, which prevented many type and structural errors even
being introduced, was an obstacle to some users who then used
the text view to construct their broken programs, a negative
use of time that could have been spent establishing why the
code was not allowed. Neither technique was the intended use
of the system, however, and both represent flaws or at least
limitations in the approach taken by Tiled Grace.

Many participants opted to use textual cut and paste for
operations that could easily be carried out by drag and drop.
It may be that users are conditioned to perform such “moving”
operations as text, which may also explain the high proportion
of string or number modifications performed in the text mode.

Further research is required to confirm or refute all of these
findings, particularly those with no a priori reason to expect
them.

7. Discussion
A very common issue that has been encountered in intro-

ductory visual languages is that learners do not consider them
“real” programming languages [30, 39, 40]. In some cases, the
fact of being “easier” than text was interpreted to mean that the
visual language did not “count” as programming, particularly
when textual programming was later found challenging. Pre-
conceived ideas about what is and is not programming, or what
kinds of programming are or are not useful, can lead to block-
based systems being regarded negatively by both current and
prospective users. DiSalvo [49] found that learner perceptions
of visual and textual programming systems varied according
to the ultimate career goals of the user. Users with an interest
in a programming career were more inclined towards a textual
language than Alice, while those interested in media and
design careers inclined the other way. For some, finding the
textual language harder was in fact a point in its favour.

In Tiled Grace we aimed to avoid the perception that a
block-based language was not “real” by having the block
and textual language exactly match one another and pre-
sented equally. Experimentally, we did see users deploy both
modes, and seem to understand the connection between the
two. Similar to DiSalvo [49], and like Weintrop [50] and
Matsuzawa [20] as well, however, we found that a number of
participants very strongly preferred the textual mode and were
even scornful of the tiled mode and its presence, to the point
of using text almost exclusively even when the system design
made it more difficult to complete tasks in that way. Three
participants explicitly noted unprompted that they were pre-
disposed to dislike GUIs. Other users exclusively used blocks.
On one level, the fact that they were able to do so within the
same system speaks to a more inclusive environment than a
single-paradigm approach allows. On another, it seems that the
presence of the other mode was at best neutral and possibly
a net negative in overall perception for both groups of users,
and might be off-putting. Neither group was more than 15%
of users in our study. We did not ask about future goals in
our experiment, but our more-experienced users (representing
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the closest proxy we have to those whose self-conception is
as programmers) were notably less positive about the sys-
tem than less-experienced users. Our — somewhat informal —
sense from observation and feedback in the experiment is that
perceiving the block language as a toy, and thus the system as
a whole as one too, played into this view. These perceptions
may be a concern for the targeting and marketing of block
languages.

Our experiences with Tiled Grace are paralleled by the
experiment of Weintrop and Wilensky [27, 51] about multi-
modal block-text environments. Their study involved high-
school students in three conditions (blocks only, blocks and
read-only JavaScript text, blocks and modifiable JavaScript
text) who began in Snap! [22] and subsequently moved on
to (textual) Java, over a ten-week course.

One facet of the study involved student performance over
different concepts and modalities [52], having been exposed
to both graphical Snap! and textual Java across the course and
completing commutative assessments with parallel questions.
For most concepts, students performed better with graphical
code than textual. Students performed equally well on compre-
hension tasks regardless of modality, while in our experiment
when given a pure comprehension task and a choice of views,
most participants did not deviate from the default text view,
despite overall preferring the tiled view in the experiment as
a whole.

There may be no particular advantage in understanding code
to either a block or textual view, despite blocks making the
structure of the code explicit, at least for the relatively small
programs in use in both experiments. What advantages do
accrue from block editing would then all come from easier
construction of programs, rather than easier understanding.
Such a result does not seem to match with the self-reporting
of participants in either study or elsewhere in the literature,
and so needs further investigation.

When Weintrop’s students were asked to compare Java and
Snap!, those who expressed a view overwhelmingly said that
block-based programming was easier than text, regardless of
which condition they had originally been in. In our experiment,
similarly, participants regarded the tiled view as somewhat
easier to use, although not by the same 80% margin. Weintrop
was able to conduct interviews with participants to attempt
to establish the reasons behind these results, which can shed
some light on our own findings.

Weintrop’s analysis of the interviews in the study investi-
gates (among other things), just why blocks were found easier.
A number of points correspond to our study, and to how we
found that participants used each mode in Section 6. One that
did not, however, was that “blocks are easier to read” because
the language of blocks was different and more “English”.
We believe that this limitation is quite significant: to find
out whether blocks, themselves, are helpful, the languages
should match as closely as possible. With Tiled Grace, where
they match exactly, we did find that users regarded the tiled
view as making it easier to deal with syntax, matching those
from the Weintrop experiment who mentioned punctuation,

balanced brackets, and other syntactic noise as reasons they
found blocks easier. It is important to be careful not to conflate
elements of a block language with elements of the block
paradigm itself (albeit that this is very difficult to avoid with
current systems).

Our blocks did not have different shapes for different data
types, but were approximately colour-coded by topic (for
example, variable declarations and variable references were
similar shades). We had wished to make them shaped to
complete the “jigsaw puzzle” metaphor, but were unable to do
so with the wide range of types possible in a general-purpose
language. The Weintrop study finds that these shapes were one
of the key reasons that users said they found blocks easier to
use: the shapes of a block and hole communicate whether
they are compatible, while top and bottom connectors made
sequencing explicit. Our type checker would disallow many
invalid combinations, but only after the user had tried to per-
form it, and in some cases they would then switch the textual
view (which had less stringent immediate checks) simply to
create the code they wanted. It is possible that, had the blocks
been obviously incompatible, users would not have attempted
this to begin with. On the other hand, as Weintrop found, the
puzzle-piece metaphor can lead to confusion among learners
who expect there then to be “a” solution to a problem, as in
a jigsaw, rather than many possibilities. This expectation did
not noticeably appear in our experiment, but some participants
did express that they thought they had completed some tasks
“wrong”.

Weintrop and Wilensky’s other two reasons, that composing
code was easier or more accessible as blocks, and that blocks
were memory aids, were both borne out in our study. The pane-
switching tiled sessions from Section 6, and likely some of the
empty sessions, appear to be exactly using the block side as
a memory aid. We also observed “bottom-up” construction of
complex expressions to be common, often using an out-of-the-
way corner of the workspace to build up the expression before
moving it into place. Because Tiled Grace enforced scoping
of variable-reference tiles (necessary, as the textual language
has traditional lexical scoping, and in fact intended to help by
offering a list of available names), assembling code in this way
was sometimes not possible, to the frustration of the user. One
of the trade-offs in integrating the textual and block languages
that we had not considered was that this sort of “inside-out”
construction, which is very natural and widely-reported [53] in
block languages, would be stymied by error prevention in the
textual language. Meerbaum-Salant et al. have argued that this
style is in fact a “bad habit” [53], and that it has a longer-term
detrimental effect on learners. It is not obvious whether this
aspect of Tiled Grace is helping or hindering, and precisely
what the long-term goals are may again be important.

A later experiment by Weintrop and Holbert [50] used
Pencil Code as a switchable dual-mode environment, with
the goal of finding out how each mode was used, as in our
analysis in Section 6. Unlike in our results, the majority of
switches to blocks were to add new blocks to the program,
and empty block sessions were no more than 5.7% of the
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total. Moving a block inside another was somewhat common
in both experiments. While we considered short sessions as a
whole, Weintrop and Holbert looked only at the first action
taken after a change of modality. Given this, it is remarkable
that so many more sessions created new tiles. Weintrop and
Holbert note that two-thirds of the time a new block was added
in this way, and 86.7% of the time a control block was added,
it was the first time that block had been used. The nature of
our experiment, where starter programs were already provided,
may have limited the number of occasions to add a block in
this way. The most significant difference between the subject
populations for our experiment and theirs is that our users
were adults who primarily had past programming experience,
while Weintrop and Holbert’s were a mix of novice learners
in high school and graduate students outside of programming
(the groups are not separated in this part of the analysis).
It may also be that these populations are the cause of these
different observations, or that the nature of the language affects
user behaviour in some way (in particular, Tiled Grace had a
significantly lower total number of distinct blocks available).

Similar to in our original experiment, Weintrop and Holbert
find a wide range of levels of use of each modality, with a
trend for increased text use to go along with higher degrees
of experience. They also note some users who strongly prefer
either blocks or text almost exclusively, as did we. These
results are in line with the goals of Tiled Grace’s design, and
Weintrop and Holbert suggest that they provide support for the
dual-modality approach as providing for “low-threshold/high-
ceiling” programming environments.

Matsuzawa et al.’s experiment using both Java and Block,
which translates to and from Java, in an introductory pro-
gramming course finds a wide range of different levels of
use of textual and block editing [20]. The BlockEditor system
supports exporting to Java and importing from Java, but makes
no particular explicit mapping between the two in itself; it does
not appear that this caused any widespread trouble for learners,
which may suggest that Tiled Grace’s emphasis on making the
mapping manifest through animation is unnecessary, or it may
be a reflection of the teaching structure employed.

Across a fifteen-week course students tended to use less of
the block view as time progressed, but with highly varied rates
of change between students as well as individual fluctuations.
The rate of backsliding and inter-student variation supports
our goal of making the transition be a process, rather than an
event, as many students would have been left behind given
any particular transition point. It is notable, however, that
after a large task in the eigth week the rate of block usage
did drop dramatically, and stayed low, so it is possible that
there is a distinguished point where text becomes preferable.
It is also possible that using the text view out of necessity,
when the block view of a large program has become unwieldy,
acclimatises learners to it, and simple exposure is all that is
required to cause the text modality to take over.

Experiments using TouchDevelop with secondary-school
students [54] found that students were rapidly able to develop
non-trivial mobile applications in that environment. Long-term

users were able to produce advanced applications with no for-
mal instruction other than sample code, while shorter sessions
showed good performance regardless of programming back-
ground. One posited explanation is that, because TouchDe-
velop’s tap-based interface surfaces the available actions in a
given context on demand, it promotes experimentation with
a wider range of options with immediate feedback. Similarly,
users will less often need to search for the block they want
to use if TouchDevelop presents what it expects they may
need automatically. The “memory aid” activities from our and
other systems should not need to occur in TouchDevelop, and
some sort of context-aware suggestion mechanism would be
an advantage to the user of a block language.

Our experiment found that a sizable proportion of par-
ticipants (around one in six) had debilitating trouble using
drag-and-drop interaction with the system, despite everyday
use of mice and keyboards. Tiled Grace relies on the mouse
pointer being over a drop target, which we had taken as
the standard drag-and-drop behaviour, and these users found
that task very difficult. Other contemporary block languages
have similar behaviours: Scratch and Blockly use a point
in the upper left of the bounding box of a tile instead of
the mouse pointer, while Pencil Code uses a similar point
in combination with a Euclidean distance metric to choose
the closest target. Neither of these seems obviously more
intuitive. We have not seen studies reporting on this significant
of a difficulty dragging in block-based languages, but have
anecdotally observed tiles going otherwise than where they
were wanted in all of these systems. Past human-computer
interaction research [55–57] has found that point-and-click
interfaces may involve fewer errors and be faster than drag-
and-drop, although recent research with children [58] has
shown that they may both expect and prefer drag-and-drop
interfaces. Ludi [59] has noted accessibility problems with
contemporary block languages for users with motor or visual
impairments. These are a significant issue that is fundamental
to the interaction paradigm most of these languages currently
use, and which is only exacerbated by the observations in our
experiment. Other block-like structured editing paradigms, as
in Kölling et al’s “frame-based” Stride [25] language, or the
“point-and-tap” TouchDevelop [24] interface that requires no
continuous action, may be more suitable. Of the drag-and-drop
approaches, Pencil Code’s appears the most usable, but still
relies on free movement of the mouse.

When Powers, Ecott, and Hirshfield experimented with tran-
sitioning from Alice to Java (with BlueJ) in an introductory
programming course [30] they observed that many students

were intimidated by the textual language and
syntax, and seemed to have a difficult time seeing
how the Java code and the Alice code related

even when working with exactly corresponding Alice and
Java code. In our experiment, which used exactly parallel lan-
guages in both textual and visual modes, and in Matsuzawa et
al’s [20], which did not, understanding the relation between the
two did not seem to be an especial problem, but intimidation
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by text was evident. Students in Matsuzawa et al’s study
with lower self-rating of their skill avoided the text view, but
none of our self-rating questions showed a strong correlation
with use of either mode; we did not have a generic “rate
your programming skill” question, however. Weintrop’s earlier
experiment appears as though a similar trend may exist, but
explicit data is not available. As our experiment was much
shorter than any of the others, the trend may not have had
time to emerge.

8. Lessons and Conclusion
We see mixed success and weakness in our experiences and

results working with block-based languages. We will attempt
to distill some key lessons from our experience with Tiled
Grace that are applicable to block languages more broadly.
These lessons draw from our and others’ experimental results
and observations, and from our experience designing and
building an integrated block-text programming system.

A positive sign is that our experiment, and others’, showed
strong engagement with a predominantly block-based envi-
ronment, and that even when given the choice to use text
users in an unfamiliar language largely preferred to use
the blocks. This held even though most of our users had some
familiarity with text programming in other languages already.

One reason that some block systems have been found easier
to use is that the language of the blocks is more accessi-
ble, or more “English”, than conventional languages. This is
a language-design element, rather than a property of block
systems, and is a natural confound when assessing how helpful
a system is, so it is important to separate the effects of the
language and the interaction paradigm when evaluating
block systems. Tiled Grace’s use of identical block and text
languages is one method of keeping this distinction clear, but
designing textual languages that incorporate the benefits of
block languages is another approach.

We also found an approach to reporting errors in block-
based programs that was effective and well-regarded by ex-
periment participants, including unprompted positive mentions
and strong signs of effectiveness at communicating the issue
identified. This approach could easily be applied to other
languages in the same model, while conventional textual lan-
guages would find it difficult to provide the same level of
immediacy. Immediate in-situ feedback is effective and
much easier in block languages than text. We recommend
incorporating some similar form of error reporting into all
block-based languages, unless there is a strong pedagogical
reason to turn ill-conceived programs into runtime debugging
exercises.

Less positively, we found that more-experienced users
were substantially less favourable towards a block-based
environment than less-experienced users. While for purely
novice systems this may not be an issue, it is a significant
caution for systems aiming at broader markets or professional
use. Even novices will become more experienced over time,
and losing engagement is a problem for, at least, retention.

We believe that supporting people to move on to other
paradigms (whether through our and Pencil Code’s dual-mode
approach or otherwise) is crucial to successfully deploying
block languages for programming education (while general-
purpose or domain-specific block languages may not wish to
do so). The experience-engagement results of the previous
paragraph are one reason why, but more important are the
educational psychology aspects discussed in Section 4.1. Thus,
block languages for programming education must have an
exit strategy. Course structures predicated on simply starting
in a block language and moving on to a more conventional
language after a few months are fraught with danger unless
significant care — and time — is put into providing explicit
bridging instruction to help learners map concepts from one
world to the other. Languages that do not facilitate this process
are doing their users a disservice, but allowing and encourag-
ing mixed use appears effective.

While it is well-known that experienced users can find the
back-and-forth dragging of Scratch and other block languages
frustrating, it has been less noted that drag-and-drop visual
editing is a significant problem for some users, even those
without physical limitations on doing so. In addition, drag
and drop is much less accessible than text editing for anybody
unable to use a mouse easily, or to see what is on screen. If
block languages aim to democratise programming, they cannot
do so by excluding already-marginalised people further. Block
paradigms that are not dependent on drag and drop may be
more suitable for everybody.

Finally, we found that users made heavy use of our view-
switching ability simply to see “the other side”: they did not
always want to make changes there. These results emerged
from the instrumentation in our experiment and from free-text
feedback. It is not all-or-nothing: providing multiple views
of code helps users be more comfortable with it, even if
the code is not edited (or editable) in one view or another.

Block programming is currently undergoing substantial
growth, but we should not lose sight of potential negative
aspects. Long-term thinking is required in their design and
use, and experimentation to determine which aspects of them
are helpful, and which are ancillary or negative.
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Abstract In introductory programming teaching, block-based editors
have become very popular because they offer a number of strong
advantages for beginning programmers: They avoid many syntax
errors, can display all available instructions for visual selection and
encourage experimentation with little requirement for recall. Among
proficient programmers, however, text-based systems are strongly
preferred due to several usability and productivity advantages for
expert users. In this paper, we provide a comprehensive introduc-
tion to a novel editing paradigm, frame-based editing – including
design, implementation, experimentation and analysis. We describe
how the design of this paradigm combines many advantages of
block-based and text-based systems, then we present and discuss
an implementation of such a system for a new Java-like language
called Stride, including the results of several evaluation studies. The
resulting editing system has clear advantages for both novices and
expert programmers: It improves program representation and error
avoidance for beginners and can speed up program manipulation
for experts. Stride can also serve as an ideal stepping stone from
block-based to text-based languages in an educational context.

1. Introduction
Syntax errors are a well-known – and largely unavoidable

– problem in text-based programming. The severity of the
problem varies widely: They can range from a small nuisance
slightly slowing down an expert programmer’s workflow to an
insurmountable hurdle stopping a novice programmer in her
tracks. A significant body of existing published work explores
which errors are problematic (for example [1–3]) and how
to alleviate these problems via additional tools [4, 5], but it
is clear that text-based programming and syntax errors are
inseparable.

In this paper, we will introduce a re-thinking of editing
interactions in programming environments, which we term
frame-based editing. A reduction in the number of syntax
errors made by a programmer is one advantage, and we will
use this goal as one motivation for our new design. We
will see, however, that this is not the only benefit. Various
other advantages, including improvements in readability, better
navigation, and faster program manipulation also follow from
our design.

For beginners, syntax errors present a serious and particu-
larly annoying hurdle [4, 6]. Serious, because beginners often
lack the skill to remove the error; syntax may still be mys-
terious, and what later becomes trivial is still the main focus
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of the programming activity [7]. Annoying, because syntax
errors typically do not provide a path to any useful insight
or learning experience. While the encounter of a semantic
error may expose a misunderstanding and lead to a useful
and meaningful learning experience, overcoming a syntax error
does not usually teach an important concept of programming;
it merely enforces an arbitrary rule to be memorised.

The problem is usually compounded by the dismal quality
of error messages in many of our programming systems. Error
messages are typically written by compiler writers, and little
effort is made to include information useful to beginners.
Many errors are reported from the viewpoint of the parser
or type checker (such as the well-known “Illegal start of
expression” or “Identifier expected” messages in common
Java compilers), and in many cases, little useful information
is given to a novice [1, 5]. Weinberg [8] summarises this
succinctly: “[H]ow truly sad it is that just at the very moment
when the computer has something important to tell us, it starts
speaking gibberish.”

One instinctive goal might be to improve the quality (speci-
ficity and correctness) of error messages [9, 10]. However, we
can do better: A more worthwhile goal is to avoid syntax errors
in the first place, for the benefit of beginners and experts.

2. Blocks: Avoiding Errors in Programming
When thinking about novice programming, especially for

young learners, it is useful to consider other successful areas
of learning. When children play with Lego blocks, for ex-
ample, they typically learn various techniques of construction
without ever reading a manual and without any error messages
involved in the process. Lego blocks have the inherent quality
of allowing experimentation and fitting together only in well-
defined ways. It is not possible to connect two Lego bricks
erroneously – if they fit together at all, they fit correctly. There
are no type errors in Lego bricks.

The equivalent of Lego bricks for programming are block-
based languages, such as Scratch [11]. These languages pro-
vide statements of the programming language as direct ma-
nipulation “blocks”, which can be snapped together in syntac-
tically valid constellations.

Direct manipulation programming systems for beginners
have become widely popular in the last 10 years. In these
systems, language statements are visually represented as user
interface entities that can be manipulated: dragged, dropped,
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Figure 1. Block-based program notation in Scratch

snapped together, or double-clicked to activate. Due to the
block-like appearance of these statements in many systems,
they are often referred to as “block-based” languages.

The most popular of these systems in early programming
education is Scratch (Figure 1); other notable examples include
StarLogo TNG [12], Alice [13] and App Inventor [14]. While
these systems differ in many aspects and significant details,
they are similar enough for the purpose of our discussion here
to be treated as one common class of system.

2.1. Benefits of Block-based Languages
Due to the visual and direct manipulation nature of program-

ming elements, block-based editing achieves a more playful
feel of programming, leading young learners to more exper-
imentation and exploration [15]. All possible statements and
expressions are represented on screen, supporting recognition
rather than requiring recall for selection of statements.

What is more, most common syntax errors found in typical
text-based languages are avoided; they simply cannot be made.
It is not possible, for example, to forget to close the scope
of a conditional statement – the statement is either present
in its entirety or not at all. The syntax of statements cannot
be mistyped, and statements can only be snapped together in
syntactically valid combinations.

Indeed, the error prevention goes further than simple syntax:
Where parameters are expected, statements are often created
with reasonable default values already inserted. While the
default value might be not what the programmer desired, the
program is at least syntactically valid and will execute.

Type errors can also be avoided: statements expecting typed
expressions can contain slots of specific geometric shapes,

boolean expression
integer expression

boolean expected

Figure 2. Shapes indicating types of expressions

where the shape denotes the expected type (see Figure 2).
Expressions are represented in these shapes; only if the ex-
pression type matches the expected type will the shape fit, and
the blocks snap together. In some systems, it is not possible
to assemble a combination that would represent a type error.
(More advanced use of shapes for types in block languages
are also possible [16].)

For beginning programmers, these systems offer several
tangible benefits: they reduce the rate of errors, allow a
better exploration of the available language, make assembly of
programs easier, almost always lead to executable code, and
increase subjective satisfaction [17]. Many of these benefits
are also clearly desirable for experienced developers, so the
obvious question is: Why don’t we all program like this?

2.2. Limitations of Block-based Languages

Experienced programmers clearly favour text-based lan-
guages over direct manipulation systems. The reason lies
in several severe limitations of block-based languages: They
suffer in readability, viscosity and navigation support.

When programs in block-based languages become large
(and “large” in this context is reached very quickly – a few
pages of program code already feels “large” in these systems),
they become hard to read. The graphical nature – colour,
shape and three-dimensional appearance with light and shadow
effects – adds visual noise that can overwhelm the program
structure and distract from program semantics.

Navigation in these systems is also comparatively poor.
Quickly switching focus between declaration and use of an
entity is typically not well supported, making reading and
exploration of an existing program harder than in typical text-
based environments. The ability to position code fragments
arbitrarily in Scratch makes it difficult to systematically read
a whole program, and little support is provided for organising
the code, higher level structuring or obtaining an overview.

Viscosity – the resistance to change [18] – is high in these
systems. Making changes to existing programs requires more
effort and takes more time than in professional text-based
environments. Changing large existing code bases – rather than
the development of new, small programs – is the bread and
butter work for most experienced programmers, and this is
precisely where block-based systems do not offer adequate
support.
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3. Text-Based Programming
Text-based programming is the current standard in most

programming systems for proficient users. Many benefits are
obvious: Text is a very expressive, flexible medium that allows
fairly clear and concise definitions of programs. Humans are
very practised in reading, navigating and understanding text-
based representations.

However, text-based systems have a number of limitations.
Most of these encumber the programmer with work that could
easily be automated by a more sophisticated system. Perform-
ing the work impedes productivity, sometimes just by requiring
time to perform, and sometimes by adding cognitive load that
distracts from the intrinsic complexity of the programming
task. Common limitations include:
• Programmers must often type out program statements. Typ-

ing out keywords of the language is unnecessary work that
slows down program entry – previous work has suggested
an association between faster typing speed and increased
programming performance [19, 20]. Often, the conceptual
space of valid entities to be entered at any point in the
program is fairly limited, and more efficient selection inter-
actions could be devised.

• When entering program text, programmers must ensure syn-
tactical correctness of statements (including correct spelling
and punctuation). When the statement intended is recog-
nised (e.g. once the programmer has entered the while
keyword), it is unnecessary to make the human programmer
responsible for correct orthography of the remainder of the
construct.

• Layout, whitespace and indentation are typically under con-
trol of the programmer. Again, this is unnecessary. Many
modern programming environments will offer help in auto-
matically indenting correctly, but the indentation can still be
“broken” (i.e. changed to contravene coding styles) by the
programmer after the fact. This happens easily and often
by accident. Since indentation and layout rules exist and
follow simple algorithms, there is no reason why this cannot
be fully automated, freeing the programmer from one more
unproductive task.

The reason that these tasks require more work than would be
ideally desirable is rooted in the fact that program represen-
tation is based on pure text. A one-dimensional sequence of
free-form characters is arranged two-dimensionally on screen,
and this serves as the basis for all program elements.

Pure text representation is a technology developed more
than half a century ago for early computer terminals, and
there is little reason today – other than historical inertia –
to restrict program representation to this limited form. (This
observation previously led to work on structure editors; later,
in section 13, we will examine why these early attempts failed
but block-based editors later succeeded.)

Few reasons exist that program statements have to be typed
out manually in their entirety, that the programmer should be
responsible for correct punctuation, or that characters (tabs
and spaces) should be used for the arrangement of program

components on a page. Some work has also suggested that
the choice of syntax symbols is often arbitrary, and that a
randomly chosen syntax is no less usable than existing ones
[21].

Scope is represented in many programming languages by
using a pair of brackets. This is undesirable for several reasons:
• A pair of brackets is not the best visual representation of

the extent of a scope. Considering graphical elements as a
possible part of a language, using drawn frames, boxes or
colours offers a clearer, continuous representation which is
easier to recognise and interpret than two isolated brackets.

• The fact that one can even omit a closing bracket – that
it is technically possible to enter half a statement – serves
no useful purpose. Any modern system should ensure that
a statement is either present or absent, and offer interaction
techniques that allow convenient entry and manipulation.
Representing program statements as a sequence of char-
acters which can all be edited individually – for example
deleting a single character out of the middle of a language
keyword – is an archaic accidental artefact that is hard to
justify in today’s code editors.
Modern IDEs have largely recognised this fact and offer a

variety of support mechanisms to address some of these issues.
Shortcuts, code completion, auto-indentation and automatic
entry of matching brackets and quotes are all designed to
alleviate the unnecessary busy work a programmer is tasked
with. However, these mechanisms fail to solve the real prob-
lem. While they streamline the entry of the program text,
the representation is still pure text, with all the resulting
problems. Spelling can still be incorrect, parentheses can be
deleted after entry to break the balance, indentation can be
changed accidentally, and so on. Various possible benefits
and improvements cannot be realised due to the reliance on
pure text for program representation. In the following parts of
the paper, we shall discuss some improvements that become
possible when leaving behind pure text as the medium.

4. Blocks versus Text: A Brief Comparison
4.1. Criteria

In the previous sections, we have discussed some beneficial
and some problematic aspects of direct manipulation (block-
based) and text-based programming environments.

Three aspects emerge as the main areas of consideration:
• Representation includes the appearance of the program at

various scales, from the visual appearance of a single in-
struction to the representation of larger structures such as
control structures, classes, or modules. Representation is
crucial for program comprehension and readability.

• Manipulation describes all aspects of program entry and
editing, including ease of entry and deletion of program
constructs, making changes ranging from small scale edits
to large refactorings, and extending existing program source.

• Error rate refers to the rate of errors an average programmer
makes, or the number of errors that can be made in a system.
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As we have discussed, a significant number of syntactical
or type errors can be avoided in some systems.

4.2. Comparison
Using these three areas of consideration, which class of

system – block-based or text-based – is better? This question
cannot be answered without taking the type of user into ac-
count, so we will ask this question individually for two relevant
distinct user groups: Beginners and proficient programmers.

4.2.1. Novice Programmers
For novice programmers, block-based environments have a

lot to offer:
• They provide a clearer, easier to interpret representation of

individual program statements and their semantics;
• They allow easier manipulation of program elements, to a

large extent because of the recognition-over-recall charac-
teristic of entering program code; and

• They lead to a significantly lower error rate, eliminating
many syntax errors outright.
For a typical thirteen-year-old novice, block-based systems

win on all counts – a finding confirmed by several recent
blocks versus text comparison studies [22, 23].

4.2.2. Proficient Programmers
For proficient programmers, text-based systems have some

distinct advantages:
• Once a reader has been trained to read a programming

language, text provides a more concise, more readable
representation than blocks;

• Manipulation in standard text editors is faster and more flex-
ible than in block-based systems – viscosity is significantly
lower; but

• Text-based environments still allow a higher error rate, and
even proficient programmers will make some errors which
would not be possible in direct manipulation systems. Many
of these errors will be slips and typographical errors, which
are quickly fixed by experts; however, they still have the
potential to interrupt workflow and cognitive processes.
Overall, for proficient programmers, typical text-based en-

vironments are clearly preferable.

4.3. Where is the Cut-off?
In the above discussion, we have – rather arbitrarily –

distinguished only two groups: “novices” and “proficient pro-
grammers”. This raises the questions: What about intermediate
users? And at what point do programmers become sufficiently
“proficient” to warrant a shift to text-based systems?

In fact, programmers reach the point where their proficiency
outstrips the usability of typical block-based languages fairly
quickly. We believe that a typical sixteen year-old, having
programmed for two or three years with Scratch or similar
systems, will normally have reached a level of expertise and
expectation where she is more efficient and productive with a
typical text-based system. For adults, with their higher ability

of dealing with abstraction and notation, the time of usefulness
of block-based systems is much shorter still (and may be near
zero for some novices with good technical and abstraction
background).

Despite their clear and distinct advantages in early stages
of learning to program, current block-based languages do
not manage to support programming activity for a significant
length of time beyond the initial learning stages. Programmers
outgrow these kinds of system fairly quickly, and their advan-
tages are lost with the switch to traditional text-based systems.
(We have discussed elsewhere the issues surrounding the tran-
sition from blocks to text programming in more detail [24]).

One could present the view that, at the time of sufficient
maturity that a change to a text-based system is advisable, the
additional help provided by direct manipulation systems is not
needed anymore, and thus there is no problem. This, however,
misses an opportunity. We strongly believe that proficient
programmers can also profit from the advantages that block-
based systems bring to the table: clearer representation, easier
manipulation, and lower rates of errors. Programming for all
users can be improved if the advantages of both kinds of
systems can be combined.

5. Frames: A New Editing Paradigm
In the remainder of this paper, we present the concept of

frame-based editing, a redesign of program editing with the
goal of combining the advantages of text-based and direct
manipulation editing systems.

Block-based languages provide the following main advan-
tages:

• They make many syntax errors impossible, and thus reduce
error rates.

• They make program statements visible and support recog-
nition and experimentation.

• Some selected editing operations are quicker or easier due
to the direct manipulation characteristics of the program
elements.

Text-based systems have the following strengths:

• The representation is more readable for anyone but early
novices.

• Lower viscosity; program manipulation is quicker.
• Navigation and exploration are more flexible.
• Programs can be entered, manipulated and navigated purely

via the keyboard.

The goal is to combine the best of both worlds, to create
an editing technology that sits in the space between block-
based and text-based languages and that combines advantages
of both systems.

The principle providing the foundation of this design is to
approach the problem from an HCI perspective. Two views
are fundamental:

• A programming environment is a user interface for
manipulating a program.
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• A programming environment is a user interface for
understanding a program.

Reading and writing programs is equally important, and
therefore both the representation and the manipulation aspects
need to be considered equally.

When designing an interface for the representation and ma-
nipulation of programs, some elements are better represented
graphically. Scope, for example, is a concept of extent in
the program text, and can better be presented with graphical
elements (such as boxes) than by using characters (such as
brackets) in the text flow of the program.

6. Design of a Frame-Based Editor

Figure 3, overleaf, shows the interface of a frame-based
editor for a new, Java-like language called Stride1, integrated
into the Greenfoot system since 2015 (and BlueJ since 2017).
The editor uses some graphical elements (shapes and colours)
to present aspects where graphics have advantages over char-
acters. Overall, however, the presentation maintains the look
of a program as essentially a textual, if coloured, document.

Greenfoot [25], the system our current implementation was
first integrated into, is an introductory development environ-
ment aimed at beginning programmers. Previously, when it
supported only the Java programming language, it was targeted
at those aged from about 14 years old upwards. The new
version, also supporting Stride, is aimed at an audience starting
younger than that by two or three years. We will use this
implementation as the prototype to discuss the concepts of
frame-based editing.

While some specific design decisions are influenced by the
concrete context (a novice user group likely to transition to
Java), most of the aspects described here are independent of
this context, and the design advantages would apply equally to
professional environments. We will discuss this applicability
to professional environments further in section 14.

6.1. Representation

Figure 4 shows the look of a segment of typical program
code in Stride. We will discuss several aspects of our code
representation, in turn.

6.1.1. Scope

Scopes are represented as frames: graphical boxes, rather
than the customary pair of brackets or keywords. This is true
for all scopes: classes, methods and control structures. The
frames – like the scopes – may be nested.

The advantages are fairly obvious: Recognising the extent
– beginning and end – of a scope is much easier and quicker
in this representation. Programmers do not need to determine
which closing bracket matches which opening bracket, and no
additional confusion can be created by misleading indentation.

1The exact differences between Java and Stride are detailed in the appendix.

6.1.2. Indentation
In text programming, indentation is created using editable

whitespace characters (tabs or spaces; the subject of a long-
running debate, which also includes the exact number of
spaces to be used), and programmers are responsible for
creating and maintaining correct indentation. Both of these are
archaic characteristics that have no place in modern editors.
We will see that this fact – that all program elements are
represented by text characters – forms the basis of problems
with many elements of current systems.

Making programmers responsible for maintaining correct
indentation – a task that can easily be automated – adds
unnecessary work, both manual and cognitive, and may cause
distraction from the actual task the user wants to achieve. The
fact that almost all modern programming environments pro-
vide substantial help with this, in the form of auto-indentation
of newly added lines and auto-formatters for whole documents,
shows that designers of text editors are aware of the problem.
But there is no reason to allow indentation to be later modified
to be incorrect, or to require programmers to think about it at
all.

Making the editor responsible for indentation also opens up
a solution to another problem. Many programmers disagree
over the desired depth of indent; anywhere from two to eight
spaces is used. Frame-based code does not store the indent
depth in the file – it is simply a graphical attribute in the
editor2. Thus, it becomes possible for each programmer to
define their own preferred indent level as a personal display
preference without altering the shared code. And because our
editor also manages the line-wrapping of code as a visual
aspect (without modifying code to add line breaks, etc), the
indentation of continuation lines is also automated.

One partial consequence of managing the indentation as an
editor attribute is that we are free to use variable-width fonts.
The main advantage of traditional monospace coding fonts is
that they allow programmers to align code. This is no longer
tied to font selection in frame-based editing. Some studies
have suggested that variable-width fonts are more readable
than fixed-width [26, 27], although these results are often hard
to generalise as they are affected by specific choice of font
face.

6.1.3. Whitespace
While indentation – leading horizontal whitespace – is

maintained automatically in a frame-based editor, vertical
whitespace – blank lines in traditional text editors – is partly
automatic and partly under control of the programmer.

Spacing between fixed elements of a program (for example,
the space between method declarations) is maintained by the
system. There is little need for this to vary, so consistency can
automatically be maintained.

Within a sequence of statements, vertical whitespace is
sometimes used to separate logically distinct parts of a method.

2A similar argument is made for tabs over spaces, but continuation lines
usually present a further problem.
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Figure 4. Code representation in a frame-based editor

This is a semantic consideration – not a syntactic one –
and a programmer, therefore, has the option to enter vertical
whitespace between statements, equivalent to inserting a blank
line in a text editor.

6.1.4. Colour

Background colour is used to identify different frames,
which represent different kinds of program elements. In our
implementation, the outermost frame – the class – has a green
background, methods are yellow, with other types of frames
using various colours to distinguish themselves.

Simple statements, such as assignments or method calls,
are also represented by frames (although these do not hold
nested statements). These simple frames have a greyish-sandy
background colour and no border drawn around them. This
makes sequences of statements visually less busy than in most
block-based editors.

Many frames have “slots” – holes that need to be filled in
to complete the statement – such as the condition in an if-
statement or the value in an assignment. These slots are white
when they are empty. When slots are correctly filled in, they
acquire the background colour of the frame, blending into their
context. Thus white areas, standing out quite clearly, signify
syntactically unfinished code (visible later on in Figure 7 and
Figure 8).

Users can get used to these colours quite quickly, and they
provide useful cues about program structure that are quicker
and easier to recognise than groupings arranged using bracket
characters.

Figure 5. A group of variable declarations

Figure 6. Representation of a break statement

6.1.5. Context Sensitive Display
The visual representation of statements can be context

sensitive. For example, a variable declaration starts with the
keyword “var” (Figure 5). However, if a variable is declared
directly below another variable declaration, the keyword is not
repeated; for visual simplicity, the keyword is shown only once
for a variable group. The indentation of the rest of the frame is
kept constant, to indicate a grouping of variable declarations.

Another context-adaptive example is the presentation of
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Figure 7. An if-statement with empty slots

break statements, which exit the innermost loop or switch
statement in which they are contained. The background colour
of the break statement automatically matches the innermost
enclosing loop or switch statement, representing its context,
and a solid band of colour is drawn from that container’s indent
to the break statement (Figure 6).

This reflects again the underlying principle that the pro-
grammer is responsible for creating the structure of the pro-
gram, but not for creating or maintaining its visual represen-
tation.

6.2. Manipulation
Manipulation of programs takes place mostly at the frame

level. Users enter, remove or manipulate frames as a whole.
Since frames represent statements (and other program ele-
ments) the main unit of manipulation is complete statements,
not single characters. Character level editing exists only in text
slots within frames (see section 6.2.2).

6.2.1. Insertion of Statements
Statements are inserted by inserting a frame. Every kind of

statement has its corresponding frame, which can be inserted
using a single command key when a frame cursor has focus
(see section 6.2.3 and section 7.5).

Command keys are simple character keys on the keyboard
– they do not need to be combined with a modifier key. Thus
pressing the ‘i’ key when the frame cursor is focused will enter
an if-statement (not the character ‘i’). This is different from
auto-completion of statements as supported in many traditional
environments. There is no need to trigger any code completion
system; one keypress is all that is needed. The command
keys are not necessarily the first characters of a keyword.
(Assignment, for example, can be inserted by typing an equals
symbol.)

6.2.2. Slots
Some frames are complete just by inserting the frame itself

(such as a break statement). However, most frames require
additional information to be filled in to be complete; this
information is provided in slots.

Frames can contain two different kinds of slots: text slots
and frame slots. Text slots accept (almost) free-form text entry,
whereas frame slots contain nested frames. A frame for an if-
statement, for example, has two initially empty slots: a text

Figure 8. Optional text slots: invisible without focus (left) and visible
when holding keyboard focus (right)

Figure 9. Cursors: a frame cursor (left) and a text cursor (right)

slot to specify the condition and a frame slot to hold the body
of the statement (Figure 7).

Text slots have a white background when they are empty,
expecting text entry. Two varieties of text slot exist: compul-
sory and optional text slots.

Compulsory text slots are always visible, and content must
be supplied to create a syntactically valid program. The con-
dition of an if-statement is an example.

Optional slots are only visible when the cursor navigates to
their potential location. An example is a formal parameter in
a method declaration. The parameter list always has optional
slots at the end so that additional parameters may be entered.
When the cursor is not at the location of the optional slot, it is
invisible (Figure 8, left); however, when the cursor is moved
to the location of the optional slot it becomes visible, gains
focus and text can be entered (Figure 8, right). In the case of
the formal parameter, two optional slots are present, one for
the type and one for the parameter name. When one is filled
in, the other slot becomes compulsory.

6.2.3. Frame Cursor versus Text Cursor

A focused frame editor always displays one cursor, and the
cursor is always in a slot. Two different types of cursor exist,
depending on what kind of slot has focus: When the cursor is
in a frame slot, a frame cursor is shown (Figure 9, left); inside
a text slot, the cursor changes to a text cursor (Figure 9, right).
It is not possible to have a frame cursor and a text cursor at
the same time.

Interpretation of input differs with the two different cursors:
When the frame cursor is visible, key input is interpreted as
commands, and corresponding frames are inserted. When the
text cursor is visible, keys insert their own character literally,
as in a traditional text editor.

Technically, this introduces two separate modes: a frame
editing mode and a text-editing mode. These modes are entered
by cursor movement, and visually distinguished by a different
cursor representation. Whether this causes confusion to users
was one of the important early questions in this design, and
is discussed further below.

47



Figure 10. Preview of delete operations

Figure 11. A disabled frame

Statements are frames, and entered in frame slots, while
expressions are not frames, and are entered in text slots.

6.2.4. Deletion of Statements
As with insertion, deletion of a frame deletes the whole

statement. Deletion can be achieved using the delete or
backspace keys when the frame cursor is before or after the
frame, respectively.

Another option to delete a frame is to right-click the frame
with the mouse, and selecting a delete option from the frame’s
pop-up menu. Different delete options may be available: If,
for example, the frame is an if-statement, the statement can
be deleted while leaving the statements contained in its body
present, or the statements in the body may be deleted with it.
While a function is selected in the menu, a preview annotation
in the source code hints at the effect of the selected function
(Figure 10).

6.2.5. Disabling Frames
The example above, selecting ‘Delete’ from a frame’s con-

text menu, shows another advantage of elevating program ele-
ments to first class citizens in the interface. Since declarations
and statements have become interface entities in their own
right, they can have associated properties and functionality.

Most obviously, they can have a context menu which offers
operations on the frame. One of these operations is disabling
a frame.

Disabling a frame (Figure 11) temporarily treats the frame
as if it were deleted. In traditional systems, this is typically
done by “commenting out” a block of text. (One study [28]
found that 63% of all comment usages were disabling code,
not providing an actual text comment.) Again, we see the
richer possibilities of an interface not relying solely on char-
acters for functionality: “Commenting out” a sequence of
statements to temporarily disable them is technically a misuse
of the comment symbol – unused code is not a comment.
The purpose here is not to comment on other code, and a
comment symbol is used merely because of the absence of
other mechanisms.

If a comment symbol is entered at each line, entry and
removal can be tedious, and individual lines can be missed.
If a block comment is used, they typically cannot nest and so
consideration must be given to whether the commented section
already contains a block comment.

Existing text-based environments can alleviate the issue of
the display by giving comments a different appearance (al-
though there is no distinction between actual prose comments
and disabled code). Our frame editor gives disabled frames a
lightly blurred appearance (Blockly has similar functionality
and changes the background appearance). Unlike in traditional
editors, it is not possible to comment out part of a statement,
for instance missing a closing bracket of a scope, and thus
breaking program structure.

The explicit disable function in the frame editor is both
visually clearer and less prone to syntax errors. A disabled
frame can be re-enabled by the user when required. All frames
inside a disabled frame are always disabled; you cannot re-
enable a frame inside a disabled block (we believe this would
make the program flow too hard to follow). However, inner
frames can be easily dragged out and re-enabled.

6.2.6. Selection and Clipboard Operations
One theme in frame-based editing is the idea that most

operations should act on whole frames (structures), and not
parts of frames. This also applies to selection.

Selection of frames always selects a whole frame, or mul-
tiple adjacent frames inside the same enclosing frame slot. If
the user selects a loop frame, for example, all of its content
is automatically included in the selection. As a consequence,
a frame selection must always begin and end within the same
frame slot (scope).

Multiple selected frames can be dragged simultaneously
as described in the next section, or the usual cut and copy
operations can be performed. Frames may be pasted at a frame
cursor location. So cut/copy/paste may be performed on single
frames or multiple consecutive frames (at the same scope), and
is also possible on the text content of individual slots.

When one or more frames are selected, inserting a control
structure frame wraps the selection in that frame; the selection
becomes the body of the inserted structure. This provides an
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Figure 12. Cursor indicates valid (top) and invalid (bottom) drop
targets. The drag source (at bottom of each) is blurred during drag.

easy way to add a loop or if-guard to existing code, as would
be done in text by adding a header at the beginning, then
adding a closing curly bracket at the end, then correcting the
indent.

6.2.7. Drag and Drop

Treating statements and declarations as interface entities
also naturally leads to the expectation of being able to perform
drag-and-drop operations on them. Frames can be dragged
with the mouse and dropped at alternative locations.

In traditional text editors, similar functionality is usually
available: Text can be selected, and the selected text can be
dragged and dropped to a different location.

Again, the different unit of manipulation (editing frames
instead of editing characters) leads to various advantages in
our editor compared to text:

• In text editors, arbitrary spans of text can be selected and
dragged. These may include parts of statements, acciden-
tally selected, and thus the drag operation may invalidate
program structure. In the frame editor, only complete frames
can be dragged. (This includes simple one-line statements
– these are also frames.)

• Selecting a complete multi-line statement in a text editor
typically requires careful targeting with the mouse, making
this a high-overhead operation. It usually requires careful

consideration of including whitespace, indentation or trail-
ing return characters in the selection, resulting in different
formatting for subtly different choices. No such consider-
ation and fine targeting are required in a frame editor; the
frame is a large target, and does not require selection before
dragging.

• In text editors, dragged text may be dropped anywhere,
again potentially breaking program structure. The vast ma-
jority of potential drop locations are syntactically invalid,
yet no help is provided by the editor in identifying the
few valid ones. In the frame editor, frames may be dropped
only at locations where they maintain a syntactically correct
structure. While frames are being dragged, the cursor indi-
cates whether a potential target is valid or not (Figure 12).

It makes little sense to allow, for example, placing state-
ments outside of a method body or method declarations at
locations where they are invalid. Since many more potential
edits invalidate legal structure than maintain it, disallowing
invalid manipulation severely cuts down the space of possible
user actions. Fewer possible actions lead to simpler and more
expressive interfaces and fewer mistakes.

Dragging and dropping in frame-based editing also has
advantages over block-based editing. In most block-based
editors, it is awkward to drag out individual blocks or two
adjacent blocks from a larger body. Generally, you must either
drag the blocks separately, or (in the case of Scratch and many
others), drag out the body, pick it apart with a further drag or
two, then drag back the pieces you wanted to keep in place.
Allowing a frame selection followed by a drag provides a
much easier and clearer way to perform such a manipulation.

6.2.8. Changing Frame Type
One manipulation that is often highlighted as difficult in

block-based or structure editors is that of changing the type
of frame. A common example is changing while loops into if
statements, and vice versa. There is also the issue of changing,
for example, method calls into assignments if you wish to store
the result (either because it was a mistake to discard it, or
because you now need the result3), or vice versa if you decide
not to. We have different mechanisms for these manipulations,
which we will consider in turn.

We resolve the issue of changing method calls into assign-
ments by direct text editing. If the user types an assignment
symbol (the ‘=’ character) in a method call frame then the
frame is automatically converted into an assignment frame.
Similarly, deleting the assignment symbol from an assignment
frame (by placing the cursor before and pressing delete, or
after and pressing backspace) converts in the opposite direc-
tion. This means existing text-manipulation patterns transfer
directly. This does present a question as to whether it is worth
conceiving of method call and assignment frames as different

3Many Java methods have a side-effect and return a value which may or
may not be of interest. For example, the remove method on lists in Java
removes the element from the list if present, and returns a boolean indicating
whether the item was present or not. Depending on your code, you may or
may not care whether it was present or not beforehand.
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at all. We believe it is pedagogically useful to consider assign-
ment different from a plain method call, even if technically in
the editor, there is minimal difference.

The issue of transforming while to if statements is handled
differently, because we do not allow editing of keywords, and
thus text-manipulation cannot be used to make the change.
Initially in the Stride editor, we were uncertain whether it was
worth providing this transformation. Our intuition was that this
transformation was rarely needed. However, we have access
to a dataset to verify this. The Blackbox data set [29] records
the editing behaviour of several million sessions of BlueJ, our
beginners’ Java IDE.

We looked in the Blackbox data set for the number of edits
(and session counts) which introduced a new line of code
containing an if statement, a new line of code containing
a while statement, or changing if to while (and vice versa)
without changing the accompanying condition4. We found that
(to 3 significant figures):
• In total, there were 732,000,000 edits across 9,160,000

sessions.
• 2,030,000 edits (across 1,030,000 sessions) introduced a

new line with an if statement header
• 46,900 edits (across 35,200 sessions) changed an if state-

ment header to a while
• 376,000 edits (across 277,000 sessions) introduced a new-

line with a while loop header
• 40,600 edits (across 29,400 sessions) changed a while loop

header to an if
This means that over 10% of the while loops written later

get changed to if statements (minus those which are changed
back and forth between while and if, something which is
difficult to track). This was a much larger proportion that we
had anticipated, and on this basis we introduced a context
menu option to change an if statement to a while loop, and
vice versa.

6.2.9. Localised History
Our frame-based editor has a standard, class-wide undo

system: The standard Ctrl-Z shortcut undoes the last edit,
whether it altered the value of a text slot or moved, added
or deleted a frame.

A previous study of programmer behaviour, however, found
that programmers rarely used the undo feature [28]. Program-
mers observed in this study preferred backspace for correcting
recent typing mistakes. They were often unable to use undo
for their other corrections because they had already made
subsequent correct edits elsewhere before noticing the error;
undo would have removed these first.

To solve this problem, we offer localised history. Each slot
keeps a history of the three most recent content values. A sub-
menu in the context menu offers these values for selection to
restore an earlier state. This mechanism provides independent
undo functions for logical elements of the code, even if other

4This stipulation avoids falsely counting cases where the user has happened
to paste completely different line(s) of code over the previous code.

edits have been made elsewhere. Apart from providing more
flexible undo, this function also supports easy experimentation:
Values may be changed temporarily with the ability to restore
previous values easily. Like several features in our frame-based
editor, this feature is difficult to implement well in text-based
editors [30], but is straightforward in frame-based editing.

6.2.10. Extending Frames
Many frames, such as while loops, have a fixed structure.

Other frames, however, can be extended: An if-statement
frame, for example, begins without an “else” clause, but can
be extended to add it. Another example is the extension of a
constructor definition to add a “super” or “this” call to invoke
another constructor. Frame extension is triggered by command
keys, just as frame insertion. For example, to add an “else”
clause to an if-frame, the user should place the frame cursor
inside an if-frame, and press the ‘e’ key; any frames after
the cursor position will be used as the body of the new else
clause. Adding “else if” clauses is done in a similar way, with
the ‘l’ key. Deleting such extensions is done by placing the
frame cursor at the top of the following frame slot and hitting
backspace.

6.3. Navigation
The frame cursor allows navigation and manipulation to

be performed with the keyboard, which is the preferred input
method for navigation for practised programmers [31].

The frame cursor is always positioned between frames. Up
and down navigation moves in steps of single lines by default
(mimicking traditional editors). However, combining the use of
cursor keys with a modifier key moves the cursor at the current
scope level, jumping over compound frames in a single step.
This adds a generic method of quick movement; if the cursor
is outside of a method, for example, this command moves in
increments of whole method definitions and provides quick
navigation through a class.

The left and right cursor keys enter a slot in the neighbour-
ing frame, whether it is a text slot or a frame slot, positioning
the cursor at the beginning or end of the slot: The left key goes
to the end of the last slot in the previous frame, while the right
key goes to the beginning of the first slot in the next frame.
The TAB and Shift-TAB keys can also be used to navigate
slots.

Overall, this key binding largely mimics movement in tra-
ditional text editors, but adds generic navigation options for
additional structure-based movement.

6.4. Overtyping
Most syntactic elements, such as parentheses, commas and

spaces, are automatically displayed annotations and decora-
tions; they do not need to be typed and cannot be edited. A
new frame is created with these decorations, and only slots
need to be filled in (Figure 13). Using a TAB character or
right arrow advances to the next slot.

While this is a common interaction sequence for form fill-
in, it goes against the habits of programmers, who are used to
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Figure 13. A method frame with empty slots

typing the spaces and other syntactic elements. In the Stride
editor, typing the syntax elements is permitted and advances
the cursor to the next slot. The programmer can effectively
“type over” a syntax element. For example, when entering the
method return type in Figure 13, typing a space moves the
cursor to the method name field. From there, typing an open
parenthesis advances the cursor to the parameter list. Pressing
space again moves from parameter type to parameter name.
A comma in the parameter name slot creates the additional
parameter slots and places the cursor into them.

As a result, an input key sequence that would type the
method signature in a traditional text editor also works iden-
tically in the Stride editor. This supports the muscle memory
of experienced programmers, who do not need to relearn all
habits of program entry.

6.5. Editing in Text Slots
When filled in correctly, text slots appear as normal text

on the background colour of their enclosing frame (see, for
example, Figure 4). This ensures that lines of code can be
read as flowing text without unnecessary visual overhead. Text
slots that are either empty or have keyboard focus have a white
background.

The Stride editor has three types of text slots: identifier slots
that support entry of an identifier of the supported language,
choice slots that allow entry of a limited set of fixed values and
expression slots for the entry of expressions. Using specialised
slots for different kinds of token in the syntax tree allows
support for more efficient content entry as well as better
avoidance and reporting of errors. We will give more detail
on each type of text slot in turn.

6.5.1. Identifier Slots
Identifier slots allow the textual entry of program identifiers,

but inhibit entry of characters that are syntactically invalid in
this context, such as punctuation characters. Typing characters
that follow the identifier slot, such as a space or the opening
parenthesis after a method name, causes slot advance by
overtyping as described above. Special characters can also
cause the insertion of optional slots; typing, for example, a
comma in a formal parameter name inserts an additional pair
of slots for entry of an additional parameter.

6.5.2. Choice Slots
Choice slots allow selection of one of a small number of

possible values. They are used, for example, for the access
modifiers of method declarations (Figure 14) which have three
possible choices.

Figure 14. Text entry in a choice slot

Choice slots behave in ways similar to combo boxes in many
interface toolkits: One value is always selected (they are never
empty), and choices can be made using the mouse or cursor
keys. Textual entry, however, is also possible. When the slot
gains keyboard focus, a menu of choices is displayed, with the
top choice selected. Typing narrows the choice list to those
values starting with the characters entered (invalid characters
are ignored), and using TAB, return, space, or a right arrow
at any point confirms the current selection and advances focus
to the next slot.

This method again ensures syntactically valid program
structure while allowing overtyping of the whole text if de-
sired, with the added possibility of much faster entry.

6.5.3. Expression Slots

Expression slots allow the entry of expressions, including
arithmetic expressions, variables and function calls.

Expressions are structured. When an operator is entered in
an expression slot (such as a plus symbol), the expression
acquires a new structure, with an operator in the middle
between two text fields for each of the operands. The operator
itself is not part of the text fields; it can be deleted, merging
the text fields again, but cannot be edited.

Multi-character operators are easily inserted. For example,
typing “<” (the less than symbol) splits the current text field
into two, with the less than operator between them. Typing
“=” (the equals symbol) at the beginning of the second field
will automatically merge with the less-than operator to make
less-than-or-equal-to, just as would happen when typing text.

Entities that appear as pairs of symbols (such as paren-
theses, brackets and quotes) always appear in full: entering
one half enters the other half automatically. While traditional
text editors typically also do this for entry (e.g., typing an
opening parenthesis automatically inserts the closing one), the
link in the Stride editor is stronger: The pair of symbols
remain linked and are processed during editing as a single
operator. Deleting one also deletes the other, selection and
drag-and-drop operations always operate on the complete sub-
expression, processing both or none of the bracket symbols.
Existing expressions can be enclosed in parentheses by se-
lecting the expression in question and pressing the opening
parenthesis. This will enter both surrounding symbols.

Again, as before, various advantages flow from the fact that
the user edits the structure of the code, not the representation:

• Some syntax errors become impossible to make, cutting the
overall error rate.
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Figure 15. Prompt text and tooltip for parameters

• Edit operations, such as selection and drag-and-drop can
guarantee to maintain syntactically valid structure.

• Errors that do occur can be associated more precisely with
a particular token in the program source, because there are
no structural syntax errors such as missing brackets.

• While structure is under the control of the programmer,
representation can be automated. For example, spacing be-
tween symbols and arranging line breaks and indentation in
long lines can be automated to be consistent and meaningful
which can enhance readability.
Automatic adaptive spacing is used in the Stride editor to

clarify precedence of operators (higher precedence operators
use less adjacent space than lower precedence operators).
This technique has previously been used in mathematical
editors [32] and in print-outs of code [33] but not usually
in WYSIWYG programing editors. It can lead to respacing
of an expression as it is entered, which is not ideal but we
believe is outweighed by the ensuing readability advantage.

All Java expressions can be entered in Stride’s structured
expression editor using exactly the same keypresses (although
almost all the space characters are redundant due to the
automatic spacing), meaning that those used to text will notice
no difference on entering text, just in the display.

Again, through the use of overtyping and flexibility in
navigation, text entry feels natural to seasoned programmers,
with opportunities for faster entry when becoming familiar
with the frame editor.

Our expressions are displayed and entered infix. We believe
it is important that the entry and display align. While we did
not choose to use prefix notation in Stride, in prefix-expression
languages like Lisp at least the entry and display are also
aligned. Many of the early structured editors displayed infix
expressions but required prefix entry. This required that the
user understand the abstract syntax tree behind the expres-
sions being created – but novices do not yet understand that
an expression is a structured tree. Therefore we felt it was
important to be able to enter expressions infix, to match how
they are displayed in the editor.

6.5.4. Prompts and Hints
One advantage of using interface elements other than pure

text for the representation is the ability to display prompts to
provide guidance for expected entry. We have seen examples
in the condition of an if-statement (Figure 7) and the definition
of a method signature (Figure 13). While these examples are
mainly useful for beginners who have not yet memorised the
syntax of those statements, there are other situations where
these prompts remain helpful for experienced programmers.

One such example is found in the actual parameter(s) of
method calls (Figure 15). In this example, the prompt text
shows the name of the formal parameter, and a tooltip may
provide additional information, showing the type and param-
eter comment.

Many existing program editors also provide helpful content
for actual parameters when entering method calls via an auto-
complete mechanism. Some enter the formal parameter name
(as in our prompts), while others guess at a possible intended
value and enter the name of a nearby variable of matching
type. None of these is ideal. In the first case, the resulting
program text is almost certainly wrong, but appears to have
been completed. In the second case, the program may compile
and run, without leaving a hint that the programmer may not
have considered and confirmed the default choice, potentially
introducing semantic errors.

The problem, again, stems from the fact that the interface
elements are just plain text: traditional text editors cannot
display text to the user embedded in the program source that
is not also part of the program, and therefore interpreted by
the compiler. (Modern IDEs are starting to develop the use of
prompts and pop-up windows for this purpose.)

In the Stride editor, using richer interface elements, we can
display the prompt text to the user while still recognising
the slot as unfilled, delivering helpful information and more
accurate errors at the same time. For example, if you write
a method in Java and forget the type or name of a param-
eter (e.g. “public void setX(x) { }”), you will get
an unhelpful error “<identifier> expected”. In Stride,
either the type or name slot will be empty, showing a more
helpful message such as “name cannot be empty”.

7. Interface Elements
The Stride editor uses various additional interface elements

to improve readability and provide additional information to a
programmer.

7.1. Method Header Display
The signature of a method contains important information:

its name, parameters, and the return type. This information is
frequently useful while reading or editing any given method.
However, if the method is longer than a few lines, the informa-
tion often scrolls out of view. In the Stride editor, scrolling up
leaves the header visible, sticking to the top of the window,
and the body of the method appears to slide underneath it
(Figure 16). Thus, the most important contextual information
remains visible.

7.2. Long Scope Annotation
Another example where header information is useful is in

the use of frames which contain conditionals in their definition,
such as if-statements and loops. Figure 16 shows examples of
these where the frame header has scrolled out of view; the
header information is then displayed in the left margin of the
frame, leaving it visible for the programmer.
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Figure 16. Method signature pinned to top of screen

Figure 17. The bird’s eye view

An alternative would have been to treat these frames iden-
tically to method frames and pin the header to the top of
the display (or, indeed, to also use the left margin for method
header displays). Pinning all open frame headers to the top was
considered undesirable as it would have resulted in a potential
stack of multiple headers, consuming more space and reducing
readability.

The more significant context of the enclosing method, and
the fact that there is only ever one enclosing method in Stride
(which does not support Java’s inner classes), justifies different
treatment with more prominent presentation.

Figure 18. List of inherited methods

Figure 19. The override annotation

7.3. Bird’s Eye View
The bird’s eye view is an alternative (temporary) view of

the class for quick orientation and navigation. Bound to a
command key, it can easily be activated and displays only
instance field, constructor and method frames, reduced to their
signatures (Figure 17). A second press toggles the display
or hiding of documentation (useful to see more details about
methods, but reduces the conciseness of the method list) and
a third press exits bird’s eye view.

As a result, users can get an easy and quick overview
over available methods, and easily navigate the class. Up- and
down-arrows select method frames, and pressing the Return
key or clicking with the mouse returns to the standard display
with the selected method in view. (A similar view-only op-
eration is available in Blockly to collapse all visible blocks,
but without the functionality to easily navigate between the
collapsed blocks.)

7.4. Inherited Methods
Inherited methods are available for invocation in subclasses.

Traditionally, the available inherited methods are not easily
visible without referring to documentation outside of the class
under construction. This causes problems for learners who
would use methods from the superclass without understanding
where the methods were declared.

In the Stride editor, a small arrow next to the superclass
name in the ‘extends’ declaration allows a list of inherited
methods to be unfolded (Figure 18).

This list serves two purposes: It provides easily accessible
in-editor documentation of the methods available, and it allows
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Figure 20. The “Cheat Sheet”, which appears on the right of the
editor

the user, via a command in a contextual menu, to override
an inherited method. Selecting the override function on an
inherited method inserts the appropriate method definition
into the current class. It should stop the availability of meth-
ods seeming ‘magic’ to beginners, by allowing all available
method calls to be seen in a class, either directly declared or
shown in the inherited list.

Methods can also be overridden in the traditional way:
by simply defining a method with a matching signature. In
this case an override annotation is automatically added to the
method definition display (Figure 19), serving as information
to the reader. This contrasts with override annotations in Java,
which the programmer must enter and manage themselves.

7.5. The Cheat Sheet
A small arrow on the right-hand side of the editor allows

a separate window pane to be displayed, showing the “Cheat

Sheet” (Figure 20). Viewing or hiding this pane is also possible
via a shortcut key, and is shown by default for new users.

The Cheat Sheet lists all frames that can be inserted at the
current cursor position, together with their command keys.
Using the command key or clicking on the frame in the Cheat
Sheet inserts the frame into the program text.

The Cheat Sheet serves a similar purpose as the block
catalogue in block-based languages: It supports recognition
over recall and encourages experimentation for users who are
not familiar with the whole range of options. One significant
difference is that block catalogues in most block-based lan-
guages show all available operations (method calls) separately,
while Stride offers only different types of frames. Thus, a
method call is shown as a single option, encompassing all
possible method calls. Selecting a specific method from those
available is left to the code completion mechanism, described
below.

As a result of this choice, the number of available options
at any point is limited and a complete set of options can be
displayed in a relatively small amount of space. (Figure 20
shows the complete list of all available statement frame types
that can be inserted at the a typical frame cursor position inside
a method.)

The Cheat Sheet is context sensitive: At any time, only
valid options are shown. If, for example, the cursor is be-
tween method definitions, only commands to insert methods
or comments are offered. One potential disadvantage is that
if a student wants to insert a frame not available at the
current context (e.g. a method, but their cursor is already
inside a method) then they will not find what they are looking
for. However, we expect that this will only be an issue for
beginners, and students will soon learn which elements are
available in which context.

8. Context-Aware Editing
In a traditional text editor, the entire text area is one in-

terface element. If the editor aims to offer context-sensitive
support, the editor must infer the type of structure currently
being edited from the representation. In a frame-based editor,
each part of the code (i.e. each node in the syntax tree) is
represented by a separate interface element. The programmer
edits the structure, not the representation, so the context of
the element edited is always known. As a result, frame-based
editors can much more easily offer context-aware editing: we
describe several examples of this here.

8.1. Contextual Code Completion
Code completion allows a programmer to insert code more

quickly than typing it in full, by selecting “completions” from
a generated list, usually chosen by matching the already typed
prefix to possible suggestions (e.g. typing “get” would offer the
completion “getNeighbours”, Figure 21). Text-based editors
often offer completion of variable and method names.

The Stride editor also offers completion of variable and
method names – but only in expression slots. If the user
is editing a type slot (e.g. a method return type or variable
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Figure 21. Code completion in Stride

declaration type), code completion offers type completions
instead (e.g. “St” will offer “String” as a completion). If the
cursor is within a string literal, code completion offers a list of
frequently used string literals (in Greenfoot’s case: image and
sound filenames in the current Greenfoot scenario) as choices.
If the user is editing a method name slot and requests code
completion, names of methods in parent classes are offered
for overriding. In a “throws” clause, only subtypes of type
Throwable are offered, and so on.

In short: The fact that the Stride editor maintains code
structure more explicitly enables better contextual support for
code entry.

8.2. Error Messages
In a text-based editor, a single character (present or missing)

can cause a parse error that affects the parsing of the rest of
the file. Too many closing curly brackets or an unterminated
string literal can affect the parsing of the remaining code.
Thus, relevant syntax error messages can be hard to determine
and can be affected by distant mistakes.

In a frame-based editor, the location of the source of a
syntax error can be much more precisely determined. There is
no possibility of unclosed scope, unterminated string literals
or missing semicolons. Each syntax error can be attributed to
a single slot in a frame.

For example, entering the text “wait(,,);” into Eclipse shows
the error “wait cannot be resolved to a type”, as the editor
struggles to decide if this is intended to be a method call or
a variable declaration. In a frame-based editor, this choice is
made explicitly upfront, and entering “wait(,,)” into a method

call frame will display two errors stating “parameter cannot
be empty”.

In fact, because so many invalid inputs are disallowed in
frame-based editing, the majority of remaining syntax errors
are simply “X cannot be blank”, positioned exactly at the
offending text slot.

8.3. Suggested Fixes
Some IDEs offer suggested fixes to a program when they

detect an error. Our Stride editor does the same, and usually
with less technical effort. In order for a text-based IDE to offer
the fix “You are attempting to assign to undeclared variable x;
fix by declaring here?”, an IDE must parse the source, deter-
mine that this is an assignment statement, check whether the
left-hand side is declared, offer this fix, and then manipulate
the text to change to a variable declaration. In our frame-
based editor, we implicitly know that an assignment frame
is an assignment; we must still check if the left-hand side
is undeclared, but then implementing the fix simply requires
swapping the assignment frame for a variable declaration
frame.

These examples demonstrate that offering improved help
and support for programmers, while not impossible in text-
based editors, is technically easier to implement in a frame-
based editor. As a result, we are able, in some areas, to offer
better functionality in the first release of a new editor than
existing professional IDEs currently offer after many years of
development.

8.4. Context-Awareness vs Error Tolerance
There is sometimes a tension between context awareness

and error tolerance. As a simple example, when the user is
entering content in a type slot, we could only allow entry of
existing known types. However, it may be that the user intends
to introduce a new type (and thus precluding its entry would
be frustrating) or they want it to be incomplete (e.g. they have
a List but need to look up its inner type). So we allow the
erroneous type to be entered even though we know it to be
wrong.

Another example is the context awareness of the frame
cursor, where we make different choices in different contexts.
We do not allow arbitrary code to be inserted outside methods:
we know this to be wrong, and if the user wants to enter an
arbitrary code fragment, they can always add it inside a nearby
method. More subtle is the case of break frames: we know
that they are only valid inside a loop or switch frame. But this
means the context relies not only on the immediate parent, but
the grandparent or further. Additionally, the user may write the
break ahead of enclosing the current code in a loop. We thus
allow break frames to be entered anywhere a statement can,
and an error will be issued if this is an invalid placement.

9. Implementation
Frame-based editors must store program code and attribute

information, such as the enabled/disabled state of frames. It

55



would be possible to store the frame structure as standard
text (e.g. as Java code). An advantage then would be the
interoperability on the same source files with other editors.
We do not do this for several reasons.

Firstly, it requires extra technical effort to read and write
the code from/to Java compared to storing it in a structured
format. Secondly, if the file was externally edited it could
be in an invalid state that is unrepresentable in our frame
editor. Thirdly, any details such as white space in the Java
code would be difficult or impossible to preserve during frame-
based editing. Fourthly, Stride only supports a subset of Java,
which makes it awkward if the Java code contains features
unsupported by Stride (see appendix).

In short, storing the code as Java text would expose many
of the problems that frame-based editing eliminates. Thus, the
Stride editor stores the code in a simple structured form, using
XML.

One historical advantage of text is that it was portable
between tools. But this is not an inherent advantage of text-
based programming: the advantage of being able to edit code
in multiple editors, and for code written in Emacs to be
analysable in Eclipse is not to do with text, it is because
there is a standard format for Java code (defined by the Java
language standard). There is no reason that Stride code stored
as XML could not also be edited, analysed or compiled by
other tools (including existing text editors, although this would
be slightly unwieldy). Alternatively, Droplet [34] has shown
that frame-based or block-based editors can use text as the
canonical representation if desired.

We transform the program to Java source code for compi-
lation, and then use a standard Java compiler. Any semantic
errors are passed back into the editor for display to the user.
(There should be no syntax errors generated from frame-based
code, as syntax errors are detected during the Java generation
phase and short-circuit the process.)

To support the transition of learners from Stride to Java, we
also allow to preview Stride code as Java (using an animated
transformation) directly in the Stride editor, and to convert the
Stride code to Java for further editing in standard Java form
in a traditional text editor. Greenfoot supports development
in either Java or Stride, and classes in the two languages are
interoperable. This transition is also behind the syntax choices
of Stride: with a frame-based editor, the choices of keywords
or syntax (e.g. brackets around the if-condition) are a choice
solely based on visual design and comprehension rather than
ease of entry. We retain similarity to Java to allow an easier
transition from Stride to Java.

10. Evaluation A: CogTool
To evaluate the effectiveness of the design features of the

Stride editor, we have carried out a study comparing task times
of common editing tasks performed in a frame based editor
and seven other commonly available and popular programming
systems.

The editors used for this study were an earlier prototype
of our Stride editor to represent frame-based editing, Scratch,

Alice, and StarLogo TNG as examples of traditional block-
based systems, the Lego Mindstorms NXT [35] editor as an
example of a visual editor with an alternative design, and
NetBeans (Java), Greenfoot (Java), and IDLE (Python) as
representatives of common text-based editing.

The results of this evaluation have been presented in an
earlier paper [36] and are summarised here.

10.1. Cognitive Modelling
To compare the editing tasks performed in each editor,

we used CogTool [37], a software tool that automates the
creation of cognitive models for the purpose of evaluating and
comparing interactions in competing systems. Cognitive mod-
els extend on keystroke-level interaction models by including
“mental” operators, such as eye movement, reading time and
thinking time in addition to explicit interaction events (such as
key presses, mouse movements and mouse clicks). It should
be noted that CogTool is primarily intended for measuring
expert use, and aspects such as novice learning processes are
not addressed.

Cognitive models more accurately reflect interaction com-
plexity and time than keystroke-level models, but are more
difficult to correctly construct by hand [38]. It can be difficult
to judge which mental operators to include at what time, and
errors are easily introduced. CogTool automates the creation of
the cognitive models, improving accuracy considerably [38].
CogTool records the interaction sequence and uses the “Adap-
tive Control of Thought – Rational” (ACT-R) architecture, a
computer model of human cognition [39] to generate a model
of the task.

10.2. The Experiment
Green and Blackwell [40] define six “cognitive activities”

in relation to programming activity: “incrementation” (adding
new code), transcription (copying a design into code, or
copying code from somewhere else), modification, exploratory
design, searching, and exploratory understanding. For our
experiment, we primarily covered the incrementation and
modification categories. These cover common editing tasks,
including inserting and modifying statements, deletion and
restructuring of code.

Forty-six common editing tasks were defined and carried
out in each of the target systems. CogTool was used to
record and analyse the resulting interactions. For simplicity
of presentation, the tasks were grouped into five categories:
adding new statements (n=6), modifying part of a statement
(n=8), deletion (n=12), moving code to another location in
the program (n=13) and replacing code with another statement
(n=7).

10.3. Results
The recording of the sessions allowed us to observe the

number of steps involved in each task, and the cognitive
models generate simulated tasks times. The mean task times
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Table 1. Mean editing times in seconds for various editing tasks. Lower times are better. Best time highlighted.

Scratch Alice Mindstorms StarLogo Python NetBeans Greenfoot Frame editor
Insert 4.87 6.56 15.95 12.50 3.95 5.09 3.80 1.64
Modify 5.61 7.05 9.10 8.29 5.44 5.53 5.84 5.01
Delete 5.44 2.56 6.51 5.59 5.53 7.82 6.53 2.42
Move 5.48 3.09 3.82 4.97 5.18 6.01 12.20 4.84
Replace 9.80 8.90 18.55 11.55 5.16 5.10 4.69 2.29

produced by the model for each system, grouped by task type,
are presented in Table 1.

An analysis of variance (ANOVA) shows that the differences
between systems are significant in all groups except “Modify”.
Mean task times are lower for the frame editor in all groups
except “Move”. These results support our hypothesis that
frame-based editing can improve on the efficiency of common
editing tasks compared to existing editors.

11. Evaluation B: Frames vs Text in Middle
School

We aided in an evaluation of frame-based editing against
text-based editing among middle-school students. The results
have previously been published elsewhere [41] but are briefly
summarised here.

18 middle-school students were set a task in Java in Green-
foot, while 14 other students were set the same task in Stride
in Greenfoot. This allowed the task and IDE to be kept
constant between the conditions, with the only difference being
the editor paradigm: text-based Java or frame-based Stride.
Students were given a 25-minute introduction followed by the
60-minute task.

The students in both conditions rated the activity as low
frustration and high satisfaction. No differences in satisfaction
were found between Java and Stride; there exists, however, a
potential of a ceiling effect. Students in the Stride condition
advanced through the task instructions faster than the Java side
and completed more objectives with less idle time than Java.
Less time was spent making syntactic edits in Stride than in
Java, and less time was spent in Stride with non-compilable
code. Stride users encountered issues with remembering to
press the command key to insert a frame rather than just typing
immediately.

12. Evaluation C: Experienced User Study
We conducted a small user study with participants who had

programmed before to collect their opinions on using the new
editing paradigm. The results of this study have not previously
been published.

12.1. Method
We recruited 23 participants by advertising on the postgrad-

uate student mailing lists of the Computing, and Engineering
and Digital Arts departments at the University of Kent. The
study was approved under the ethics procedure at the Univer-
sity of Kent.

• What, if anything, did you find more difficult in a frame-based
editor compared to a text-based editor which you might usually
use?
• What, if anything, did you find easier in a frame-based editor
compared to a text-based editor which you might usually use?
• Did you complete task 1? Did you have any particular difficul-
ties doing so?
• Did you complete task 2? Did you have any particular difficul-
ties doing so?
• Did you complete task 3? Did you have any particular difficul-
ties doing so?
• If the frame-based editor had all the advanced features of a
professional IDE (e.g. easy project organisation and navigation,
refactoring support, version control, etc), would you consider
using a frame-based editor over a text-based editor? Whether
yes or no, please explain your reasons.
• Briefly describe your previous experience in programming:
what language(s) you commonly use, how many years you have
been programming, and what editor(s) you usually use.
• Do you have any comments you want to make about the
frame-based editor which did not fit into the previous questions?

Figure 22. The free-text questions asked in the electronic survey.

In one parallel session, the participants were seated at com-
puters and given a 5-minute verbal introduction and demon-
stration of the Stride editor on a projected screen. Participants
then worked through three sets of tasks in order. Task 1
involved detailed steps to carry out various editor interactions
(e.g. inserting frames, deleting frames, editing frames). Task
2 asked participants to enter large pieces of provided code
into the editor, and task 3 (for those few who finished all of
task 2) was to program extensions to the Greenfoot project
they had entered in task 2. Participants worked on the tasks
for around 50 minutes, with most near the end of task 2 at
the end of the allotted time. Subsequently, they were asked
to fill in an electronic survey containing some open questions
with free-form text responses (shown in Figure 22) and some
questions to be answered using a 7-point Likert scale (shown
in Figure 23).

12.2. Results
Participants were asked (as free text) to provide details

on their programming experience. 21 of the 23 participants
indicated how long they had been programming: the median
was 7 years. The most popular programming languages were
C++ and Java (17 of 23 participants in each case) and the most
popular editors mentioned were Visual Studio (7 participants)
and Eclipse (5 participants). We did not collect data on na-
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Which editor... Mean
(1 d.p.)

Distribution

...is faster to program in 3.6
� � �

...requires fewer keypresses 4.7 � � �

...makes code easier to read 5.6 � � �

...makes it easier to insert
new code

4.4 � � �

...makes it easier to edit ex-
isting code

3.4 � � �

...makes it easier to delete
existing code

5.6 � � �

Figure 23. The results of comparative questions on a 7-point Likert
scale, where 1 meant text-based editor, and 7 meant frame-based
editor. Thus, 4 is neutral, numbers lower than 4 favoured the text-
based editor, above 4 favoured the frame-based editor.

tionality but we observed that many participants did not have
English as a first language. We do not believe this affected
their ability to follow the instructions (they were all studying
at an English-speaking university), but it did lead to some
slightly broken English in the responses.

The results for the Likert scale questions are shown in
Figure 23 with details of the distribution of the responses on
the 7-point scale.

12.2.1. Negative Comments
To analyse the open text responses, we created categories for

the responses and tagged the answers given by the participants,
which we will detail now, beginning with the negative issues.

Learning Curve: The issue of the learning curve was raised
by 9 participants. By far the most frequently cited issue was
remembering to press a command key to insert a frame before
typing the content: “The shortcuts to start a new frame take
a bit of getting used to (in the beginning I’d often open
a frame by mistake by starting typing my line of code).”
One participant noted: “especially with the assignation [i.e.
assignment frame] because we are use to write the left side
first before telling it’s an assignation”.

Navigation: Four participants mentioned frame cursor nav-
igation being difficult, and another four mentioned some spe-
cific cases where they found it difficult to navigate between
certain slots using the keyboard. We plan to address these
issues in the software; it is our belief that they are solvable
usability issues rather than inherent aspects of the design (as,
for example, the command keys are).

Expression Editing: Seven participants mentioned that
editing text at the slot level could be more awkward than in a
text editor. Two highlighted the difficulties of editing incorrect

brackets when the brackets must remain paired (which pre-
vents deletion of a single bracket to move it elsewhere). This is
a cost of the advantage of never having mismatched brackets.
We plan to investigate whether there are usability additions
(e.g. allowing the drag of an opening or closing bracket to
move it) that can mitigate this problem.

Software Issues: Some responses mentioned issues with the
software, such as the code completion interface being slow,
one or two small bugs, or the lack of a “saved” indicator
when the work is auto-saved. Although we intend to address
any problems with the specific software, they do not relate
to the editing paradigm design, so we will not discuss them
further here.

Two participants also offered the viewpoint that frame-based
editing was not as advantageous as it perhaps would have
been when text was first used with primitive text editors,
because many IDEs now offer what they viewed as similar
functionality: auto-indentation, forms of scope highlighting,
text selection and mouse-dragging.

12.2.2. Positive Comments
The positive comments were categorised as follows.
Easier to read: As shown in the Likert scales in Figure 23,

most of the participants found the frame-based editor easier to
read, and this was confirmed by several mentions in the free-
text responses (e.g. “It’s more structured and easier to follow
your code.”), although none went into great detail as to why
(two mentioned the colouring and scope highlighting).

Easier to insert new code: The Likert scales for easier to
insert new code show a slight favouring of frames, and the
fewer keypresses most likely relates to inserting new frames
too (since the command-keys is one of the major differences to
text). This is confirmed by many text responses, e.g. “I like the
speed with which you can get code created. I like not having
to worry about saving, semi colons, braces and parentheses.”

Easier to delete new code: This was one of the Likert items
that most favoured frame-based editing, and was backed up
by several text responses, e.g. “It is nice being able to treat a
whole frame as one unit for the purposes of moving / deleting
etc. Since it is broken up into frames you won’t get errors
with missing / extra closing braces after such tidying up of
code.”

12.3. Study Conclusions
The main problem participants highlighted was that of the

learning curve, and in particular, remembering to press a
command key to insert a new frame, rather than just beginning
to type. It is impossible to tell from a 1-hour session how long
this problem persists, but many participants seemed to view
the issue as a temporary initial hurdle rather than a permanent
problem.

The participants were almost equally split as to their prefer-
ence between frames and text. We view this as a very positive
result once you consider the context: after only one hour
with a new paradigm which has a difficult learning curve,
many participants (all of whom were quite experienced in
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programming) indicated that they would consider using frames
over text.

To avoid overloading participants, we did not make mention
of all the frame-based editor features listed in this paper.
Several of the more advanced features – such as bird’s eye
view, the long scope annotation, the inherited methods pane,
tooltips, and overtyping – were not explicitly mentioned. Some
participants may have discovered a few of them, but we
focused primarily on the core interactions and features (the
frame cursor, frame insertion and deletion, etc). It may be
that participants would have been more positive about the
possibilities for long-term use if they had also seen the more
advanced features.

Participants praised the readability of frames, and the
speed/ease with which you can create new code, manipulate
existing frames and delete whole frames. The main sticking
point appears to be the editing and navigation of slots and their
content. Given that this hybrid approach of text and frames
(rather than pure-text of mainstream programming, or only-
blocks of Scratch et al.) is novel, there may still be room
to improve the text aspect so that any usability issues are
minimised or removed.

12.4. Threats to Validity

Participants knew that the experimenters had created the
Stride editor software being tested, which created a risk of
response bias. To mitigate this, we assured all the participants
that their responses were anonymous, and we avoided collect-
ing detailed demographic data (age, sex, etc), and used an
online form, to emphasise the anonymity of the responses.

It is possible that being non-native speakers may have
hampered the performance of some students both in terms of
the software (two students mentioned the QWERTY keyboard
layout of our PCs as being a problem for them) and the in-
structions. However, all students achieved a similar amount of
progress through the tasks (all completed task 1 successfully,
and most were near the end of task 2) and since we are not
using task progress as a measure for our analysis, this does
not seem to present a serious issue.

13. Related Work

There are two strands of previous work which relate to
frame-based editing: the work on structure editors from the
1980s and early 90s, and work on block-based editing in the
past ten years.

These strands of work suffered different fates. Structure
editing had a period of limited popularity but – apart from
a few Lisp editors – is barely used today. Block-based editing
has been a resounding success and is now the predominant
form of programming for younger age groups, via systems
such as Scratch, Snap!, Blockly editors and many others.
Given that our work relates to both, it is instructive to investi-
gate the fate of structure editors, and the relation between the
two strands of work.

13.1. Structure Editing: First Attempts

Structure editing started to receive attention in the late
1970s, beginning with systems such as the Cornell Pro-
gram Synthesizer [42]. Work on structure editors contin-
ued throughout the 1980s, producing systems such as GE-
NIE/GNOME [43] and Boxer [44] that saw some success,
as well as many other systems. There is a noticeable pattern
in the literature, with excited descriptions of new structure
editors in the early 1980s giving way to critical retrospectives
of structure editors’ failure in the late 1980s and early 1990s:
“Despite [structure editors’] potential, they have not been
successful, as evidenced by limited use. In general, they are
perceived as being too difficult to use and the benefits of their
use are outweighed by the difficulties.” [45].

So why did structure editors fail? We believe there are
four main reasons. Firstly, we should consider the computing
environments in the early 1980s. Text-mode displays were the
norm, mice would only become popular later in the 1980s,
and high resolution full-colour graphical displays would only
become widespread in the 1990s. Also crucial was that the
discipline of human-computer interaction (HCI) was in its
infancy in the 1980s. Interface design has improved immensely
in the 30 years since. All of these contextual issues meant that
the interfaces constructed for structure editors were hampered
in what they could achieve.

Secondly, there was a lack of flexibility in the structured
approach. Over time, the creators of structure editors noted that
structure editing could be awkward and overly restrictive at
the lowest levels in the syntax tree. Expressions were difficult
to manipulate, and were entered differently to their display
in many cases. They were entered prefix, with the operator
specified before the operands because the operator is higher
in the syntax tree than the operands, but displayed infix as is
standard in text editors (outside Lisp). Expressions also caused
issues with cursor movement: the cursor was generally moved
around the syntax tree which was not visible at the expression
level. For example, moving from 1 to 4 in the expression
(1+2)*(3+4) required moving “up” two levels (once to the
addition operator, once more to encompass the whole bracket),
then across one level (to the other bracket), then “down”, and
right. But these concepts of “up” and “down” are abstract and
not visualised; the user must understand syntax trees before
being able to navigate their program. As Miller et al. [46]
pointed out, structure editors were already quite different from
text editors in that the selection in a structure editor is almost
always a node and thus a range of text, rather than a point
(between characters) as users were used to in text editors.
These problems led to many systems providing hybrid editors,
where code could be entered either in text mode or in structure
mode. As per Minör [47], this could create difficulties for users
in obtaining a consistent mental model of the lexical structure
of their program code. Welsh and Toleman [48] suggested that
users do not think of their program as structured all the way
down, which relates to our decision to provide different editing
at different levels of the syntax tree.
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Thirdly, we believe a further issue was that programming
instruction in the 1980s was primarily university-based. First-
year university students learning structure editing would be
required to switch to text-based editing (ready for exit into
industry) within the next year or two. Thus structure editing
had only a small window available: it had to provide sufficient
benefits that it was worth using for only a year or two, before
students had to make a switch which would be unnecessary
if text-based tools were simply used throughout. As we will
discuss in section 13.3, this is a different environment than the
one in which block-based editing would achieve great success.

Fourthly, there were elements of over-design in the editors.
Many, if not most, of the structure editors were not a single
editor, but rather editor generators. Given a formal language
grammar, the generator would automatically produce an editor.
As later work in this area pointed out [45, 49], this led to awk-
ward editing interactions. With present-day interface design
sensibilities, for example, we would not expect that given a
description of a database table, we could automatically gener-
ate a perfectly usable web form/user workflow to populate the
table. In our own work we have made several decisions specific
to the Stride language which would not generalise to other
languages: We believe an automated editor generator is highly
unlikely to produce very usable editors in each case. (We
note that similarly, Scratch and Snap! are editors for specific
languages, although Blockly provides a counter-example as it
is a framework for creating block languages.)

Crucially, none of these reasons for the failure of structure
editors strike at their core argument: that text is an inappro-
priate way to model structured program code. (Note: we use
structured here to refer to the lexical structure of code, not the
semantic structuring that “structured programming” referred to
in the 1960s). Instead, the arguments were that the structure
editors were too unusable. The open question going into the
1990s was: did structure editors fail because no-one had yet
worked out a way to produce a more usable editor than a text
editor, or would this never be possible?

A fascinating glimpse of the potential of structure editors
was provided near the end of the first wave of interest, in
a 1992 special journal issue on structure editors. Minör [47]
describes there a possible direct manipulation structure editor,
and shows a prototype interface (reproduced here in Figure 24,
overleaf). We would now identify this as looking like an
early prototype of the today’s block-based editors. So the
structured programming era ended by pointing towards block-
based editing, just as interest in it died. Over a decade later,
these ideas would be independently reinvented by later work
such as Agentsheets [50] and Scratch to great success, as
discussed in section 13.3.

13.2. Structure editing: Recent Work
There were isolated pieces of further work on structure

editors after the 1990s, followed by several recent examples
of work in the area. In 2006, Ko and Myers [31] described
Barista, a structured code editor generator (see earlier com-
ment) which allowed editing in text or structured mode as

discussed earlier. Barista was a prototype, with a mouse-
focused interface for adding new blocks and little support for
keyboard navigation or manipulation.

A recent effort at structure editing was presented by Os-
enkov for C# [51]. The indentation level is under editor
control, as in our frame-based editor, and keywords are entered
through a classic code completion menu. At times (when the
cursor is at the beginning of what we call a frame slot) the
cursor shares similarities with a frame cursor. The type of
syntactic elements, however, is not explicitly declared by the
programmer on entry (as it is for frames through the use of a
command key), but rather is deduced from the textual repre-
sentation once the user has written enough text to resolve the
ambiguity between different possible constructs. Thus the C#
structure editor does not automate the creation of boilerplate
to the same extent, nor does it prevent subsequent editing of
keywords.

JetBrains MPS [52] is a framework/generator for creating
structure editors. MPS does not have the concept of frames as
first-class entities which can be picked up and manipulated,
and is closer to classic structure editors than to block-based
languages. With no frame cursor, navigation and selection re-
volve around what we call text slots in our editor, meaning that
direct manipulation of existing code is not as easy, especially
with the mouse. MPS also lacks the visual presentation of
frames.

The Envision editor [53] is structural, but moves much
further away from the traditional text-based presentation with
methods arbitrarily placed on a two-dimensional grid and the
use of icons instead of keywords, and provides alternative
visualisation displays such as a flowchart view. It is de-
signed to be possible to visualise large code-bases on a single
large two-dimensional display. Envision focuses on keyboard-
based interactions, in contrast to our editor, which supports
keyboard- and mouse-based interactions.

An alternative approach for touchscreen devices has been
created by Almusaly and Metoyer that uses specialised buttons
to generate common patterns in code [54]. Like our work, this
greatly reduces the number of keypresses required to enter core
program code. The keyboard is primarily focused on the entry
of code, and does not have the structured frame manipulation
that our editor provides.

Other editors support structure editing modes. One example
is the ParEdit mode in Emacs, which prevents unbalanced
parentheses and curly brackets. Gomolka and Humm [55]
described a structure editor for Lisp which also prevented un-
balanced parentheses. These tools match frame-based editing’s
advantage of avoiding unbalanced parentheses/scopes, but do
not address issues such as easy automatic keyword insertion,
illegal edits of syntactic structure or typing of syntactic sym-
bols. Lisp advocates may argue that this is because control
structures should not be special cases in the language; we
would argue that by making them known special cases, we
gain significant advantages in editing speed and readability.
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Figure 24. Editor interface proposed by Minör, 1992.

13.3. Block-based Editing
Block-based editing was in a sense a reinvention or re-

imagining of many of the ideas of structure editing. It is,
therefore, instructive to consider why it succeeded where
structure editing failed. We believe there are two main reasons.

Firstly, block-based editing had a more usable interface,
informed by fifteen years further development in HCI, and
also the ability to use high-resolution, full-colour displays
with a fast graphical system. This eliminated many previous
constraints on designers of program editors.

Secondly, some of the concerns about structure editors do
not apply in blocks’ target audience of young children. There
are few worries about the transition into text, or compatibility
with other tools or many of the other issues which dogged
structure editing in contexts such as universities or industrial
use. Thus, all blocks had to do was to provide an easier
interface for that age group – and the elimination of syntax
was an even bigger advantage for young children (who tend
to struggle with the precision required in text-based syntax)
than older learners.

Meerbaum-Salant et al. [56] examined some of the down-
sides of block-based editing, highlighting an extremely
bottom-up approach, and an issue with “extremely fine-grained
programming”, where users split their programs into particu-
larly small fragments, making them hard to read. This arises
from the way that Scratch and most other block-based editors
allow execution of single blocks, and also allow programs
to be split into very small event handlers. Neither of these
characteristics are present in our frame-based editor: code must
be contained in one single coherent class, thus not allowing

either of these issues to occur. (There may be other bad habits
which frame-based editing permits – something to investigate
in future.)

Many block-based program editors have been designed,
most quite similar in design to Scratch, the system we have
used as our primary example in this paper. We will focus here
on work performed to extend block-based programming to be
more powerful, or closer to text-based programming.

Alice 3 [57] is a block-based environment that is closer
to text programming than many others. It uses method call
syntax similar to Java rather than phrases resembling natu-
ral sentences, and code is organised into methods. However,
like many other block editors, it lacks support for keyboard
navigation and entry and does not include many of the other
possible representation improvements presented here.

Alice 3 has a text (Java) preview mode, as do other editors
such as Tiled Grace [58] and Droplet [34]. The latter two
editors allow for a two-way translation between blocks and
text representation of the exact same code, with Droplet even
preserving the indentation pattern of the original text in its
blocks view. This idea of a hybrid editor (editing code either
as blocks or as text) has similarities to the hybrid structure
editors described earlier, which allowed editing as structure
or as text. It is our belief that a successful editing paradigm
should not need such a hybrid mode; we seek to merge blocks
and text in one representation rather than requiring two distinct
modes.

A significant recent effort in block-based editing to add
keyboard support is GP [59]. GP is close to Scratch and
Snap!, but seeks to improve accessibility, add keyboard support
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and generally improve the design of block-based program-
ming languages. The designers have added a block cursor
very similar to our frame-based editing cursor, which allows
navigation along the same lines. They have chosen a more
search-focused paradigm to entering new blocks (since GP
has many more blocks available than Stride has frames) rather
than our command keys, but GP and Stride are evolving along
similar lines (thanks in part to discussions between the two
teams).

There have been attempts to apply block-based program-
ming to mainstream programming languages, such as C [60].
This acts as a proof of concept for the transferability of block
programming to other languages, but does not add any new
editing features to mainstream block editors.

TouchDevelop [61] has several modes, from a classic block-
based view through a hybrid view to a mostly text-based
representation. The hybrid view includes elements from classic
structure editing and frame-based editing; some fields are free
text entry like our text slots, while others are similar to the
choice slots or code completion, with a grid-based touch-
oriented restricted list of selections. It employs a classic text
cursor instead of a frame cursor, but syntactic constructs (such
as if-statements) can be selected by typing, in a way that is
slightly faster than IDE template code completion.

TouchDevelop allows manipulation by drag-and-drop simi-
lar to that for frames and similar schemes for frame selection
and surrounding a selection with compound statements. Being
touch-oriented, the keyboard navigation and manipulation are
less flexible than in frame-based editing, resembling classic
structure editing. For example, it is not possible to enter
a non-existent variable name in an expression, intending to
declare it later – an intermediate error state that we explicitly
choose to allow in frame-based editing. (This is a significant
difference in programmer flexibility: A study of programmer
behaviour [28] found that around one-fifth of all name edits
resulted in the use of an as-yet undeclared name.) TouchDe-
velop does not contain the structured expression slots of frame-
based editing, nor many of the informational display elements
described here, but its hybrid mode, and GP, are probably the
most similar of the existing systems to frame-based editing.

13.4. Contribution and Novelty of Frame-Based Edit-
ing

The related work described here has a complex correspon-
dence to frame-based editing. Several individual features of
frame-based editing are present in isolation in other editors,
while we believe others are entirely novel. The contributions
of frame-based editing encompass these new features and new
combinations of existing features into a robust editor publicly
released and available for serious use:
• The horizontal frame cursor, as originally developed by

McKay and Kölling, is a new feature for block-like pro-
gramming (as a target for keyboard-based insertion and
selection rather than just as a drop target), which enables or
simplifies a variety of keyboard based editing interactions,

and adds new interactions such as wrapping a selection into
a control structure.

• The combination of keyboard overtyping, bracket balancing
and automatic spacing in expression slots (and prompt text
for parameters), while partially available in existing IDEs,
is a novel way to enter expressions.

• Keyboard-enabled frame extensions are a new way to ma-
nipulate blocks that can be arbitrarily extended with addi-
tional body elements.

• The display of inherited methods as a foldout display within
the body of the code itself (rather than as a pop-up display)
is not present in other editors.

• The contextual code completion is not available outside
professional text-based IDEs, and here goes beyond them,
e.g. restricting the types available for catch clauses.

• The Cheat Sheet provides help for textual entry not previ-
ously available for keyboard-driven programming.

• The localised per-frame/per-slot history is a novel way to
support returning to earlier versions of individual elements
of program code.

14. Discussion
Our frame editor aims to fuse benefits of blocks and

text editors to increase usability, whether for writing new
code, reading or manipulating existing code. We believe there
are several advantages for novice programmers compared to
block-based and text-based programming:
• Easier to enter new code: Frames save typing much text-

based boilerplate, while keyboard commands allow faster
entry than block-based programming. Expressions can be
entered via a keyboard rather than through mouse-controlled
drag-and-drop operations.

• Fewer errors: Many syntax errors, including those related to
balancing brackets, punctuation and semicolons, are elimi-
nated.

• Better error messages: Those errors that do remain have
clearer messages and more accurate error locations than in
text-based programming.

• Readability: Frames are more easily readable than text at
the statement level (for example by depicting scope more
clearly). At the same time, its look is designed to have lower
visual overhead and offer better visual text flow than current
block-based editors. This makes programs more readable
than in block systems for larger segments of code.

We believe that expert programmers also benefit, particularly
in contrast to text-based programming:
• Faster entry: The number of keystrokes required to enter

code is significantly lower than in traditional text editors.
In addition, there is no responsibility on the programmer to
spend time maintaining the layout of code.

• Readability aids: The highlighting of scopes, improved dis-
play of method headers and annotations of long scopes all
serve to aid readability of standard programs.

• Better navigation: The Stride editor offers quicker naviga-
tion for some use cases than many traditional text editors.
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This includes easy navigation at the method level and the
availability of the bird’s eye view.
Many of these beliefs have been backed up in our user

studies. Middle-school students spent less time with non-
compilable code (in effect, had fewer errors) in Stride and
were able to proceed faster than students using Java on the
more advanced parts of a task. Expert programmers who tried
the system agreed that it made program code more readable,
and that inserting new code and deleting existing code was
faster in Stride than in text-based systems.

14.1. Separation of Code and Representation
In a frame-based editor, the structure and content of the

code and its representation on screen are decoupled.
This removes long-standing problems in programming

teams which include members with different visual prefer-
ences. Arguments about the preferred depth of indentation or
the best placement of curly brackets disappear.

In traditional systems, if one team member changes the
number of spaces used for indentation, version control systems
would register changes for all lines of code (creating possible
conflicts with other edits) even though the code structure is
unchanged. Layout changes are indistinguishable from code
changes. Thus, the same layout preferences must be imposed
on all team members.

In a frame editor, the visual appearance (including depth of
indentation and other layout details, including colours) can
be a personal preference of any team member. The code
structure is shared with the team; the visual representation
can be separately customised by any individual programmer
without affecting others.

14.2. Edit Flexibility and Tolerance of Error States
The Stride editor allows entry of many erroneous statements

and expressions, even where they could feasibly be prevented.
When entering a method call, for example, it would have
been possible to provide an interface mechanism that only
allows entry of existing method names, thus avoiding possible
mistyping of identifiers. We chose not to implement this
restriction.

While such a mechanism has the potential to prevent some
errors, it would also prevent some valid use cases and potential
work patterns. A programmer might, for example, conceive of
a new method while implementing an algorithm, write a call
to this new method first, with the plan to add the definition of
that method later. An editor that only allows calls to existing
methods would not allow this sequence; our Stride editor does.

Similarly, during the editing of an expression containing
multiple operators, the code might be temporarily in a syn-
tactically incorrect state. An editor could force a user to fix a
recognised problem before allowing entry of additional code,
ensuring that any sub-expression is syntactically correct before
allowing the cursor to move away. (The Visual Basic editor
used to have this restriction: An attempt to move the cursor
away from an incorrect line caused a modal error dialog

to appear; this was perceived as deeply frustrating by many
users.)

We consider these error prevention possibilities too restric-
tive. Users must be allowed the flexibility to choose their
order of work, including the ability to leave parts of work
half finished and incorrect to work on or consult other parts
of the system.

We believe that the over-restrictive nature of the systems is a
further significant reason that previous attempts at popularising
structure editors failed [45]. Structure editors managed to pre-
vent many errors, but most locked users into fixed workflows,
resulting in frustrated programmers reverting to free form
editors.

In the Stride editor, we do not prevent entry of many
incorrect code segments, choosing instead to subtly indicate
erroneous code (via a red underline) without blocking the
programmer from additional manipulations.

Deciding the exact line to draw – how much help (and
restriction) to provide, and how much freedom (and errors) to
allow – provides an interesting and complex design space. The
concrete decisions made in each individual editor implementa-
tion will strongly colour users’ views and opinions, determine
acceptance or rejection of the tool, and ultimately contribute
to success or failure of achieving user acceptance.

Whether we have achieved an acceptable balance in the
implementation of the Stride editor remains to be seen. We
considered many cases and attempted to make reasonable
choices, but whether we have succeeded will only be known
after a longer period of use by a larger user base.

14.3. Modal Entry and Learnability
Text editing in a frame editor is modal. Pressing a key in

a text slot has a different effect from pressing the same key
when the cursor is in a frame slot. The former enters the key
verbatim, while the latter is interpreted as a command key that
may enter a frame.

Modal interfaces are known for their potential to introduce
confusion and misinterpretation in interface operations. Users
may misread the mode and their expectations of command
entry effects may be at variance with the actual system state
and behaviour. Thus, in many situations, it may be beneficial
to avoid modal interfaces if possible.

Some examples exist, however, of very successful and ac-
cepted modal interfaces. Paint programs, for instance, often
offer a variety of paint tools, and the current choice of tool
represents a mode. This mode is typically indicated by the
shape of the mouse cursor, which may take the form of a
pencil, an eraser, or a paint bucket.

Modal interfaces can be successful if the existence of the
modes mirrors a user’s mental model and the current mode is
sufficiently clearly indicated for users to be aware of it at all
relevant times.

In the Stride editor, the mode is indicated by the shape
of the input cursor. This mirrors the successful indicators in
paint programs: Because the indicator is, by definition, at the
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point of the user’s focus, it is implicitly noticed and hard to
overlook.

The text cursor takes a very traditional shape, indicating
text entry as in common editors. The frame cursor has a very
different, distinct and prominent shape and colour, signalling
different behaviour.

Whether the cursors as visual mode indicators are sufficient
will remain to be seen with increased use of the Stride editor.
Initial observations in user trials are promising: Users seem
to adapt to the two-mode editing model easily and quickly,
without the need for formal introduction or explanation.

One misinterpretation remains longer than others after a
short time of use of Stride: When entering method calls, novice
Stride users often forget to issue the method call command
(space) before starting to type the method name. Just starting
to type the name seems a habit that is harder to break than
with other commands, perhaps because no modern language
uses a keyword before method calls, whereas other constructs
(if, while, etc) do begin with a keyword. Whether this habit
disappears after some time remains to be seen; currently, there
are not enough longtime Stride users to assert this either way.

It is our intention to conduct further detailed user studies
to assess learnability and usability issues. One of our existing
studies (evaluation B) already turned up one example issue: the
ability to delete an entire frame by placing the frame cursor
before/after it and hitting delete/backspace respectively was
used accidentally by students who then removed a large piece
of their program without meaning to. The students did not
generally think to undo, preferring instead to re-enter the code.
We have now added an overlay after deleting a large piece of
code which offers to undo it. We believe that other issues will
be on this scale: minor to medium usability issues which can
be designed against, rather than serious flaws in the interaction
model.

14.4. Code Folding
Some text-based program editors include support for code

folding: Selected segments of code (usually constructs which
in our editor are represented by frames) can be temporarily
“folded in” to reduce them to their header, similar to the
bird’s eye view described earlier. Frame-based editing and
code folding clearly can work well together – we could easily
provide a clickable control (and a shortcut key) which reduces
any given frame to a single line. Blockly already does this for
block-based editing, for example.

In Stride, we have chosen not to do so. The main reason for
this is our personal belief that code folding is not very useful
when good navigation functionality is provided. However, it is
clear that code folding can easily be implemented in a frame-
based editor.

14.5. Accessibility
Making programming accessible, for example to blind pro-

grammers, is a difficult challenge [62]. Furthermore, it has
been noted as a particular issue for block-based languages [63]

(and was a motivation for keyboard support in GP [59]), due to
their focus on a visual display and mouse-based manipulation
– items less amenable to supporting screen-reader technology
than text-based display and keyboard-based manipulation.

It is a shame that the visual aspect and mouse-focus has
prevented accessibility support, as the fundamental model
of block-based (and frame-based) editors is more suited to
accessibility. The reduction in syntax means that blind users
do not have to worry about entering or correcting the syntax;
with a screen reader, the users must either hear ”semi-colon”
read out all the time, or if it is not read out, will find it harder to
correct when it is missing. The inherent chunking of the code
into semantic units should make it easier to provide screen
readers with relevant information, compared to the line-based
approach that existing screen readers take.

Frame-based editing has several features that should allow it
to be more accessible than existing block-based editors. The
ability to perform all edit operations (entry and navigation)
using the keyboard instead of the mouse allows use of the
editor even if the user cannot operate the mouse (physically,
or due to poor sight). The way that expressions are entered
by typing them rather than entering a series of blocks should
allow for faster use by blind users than block-based entry, even
with keyboard support for blocks (as in GP). The decision to
have all program code in a single long sequence of named
methods allows easier navigation and organisation for a blind
user than multiple scattered unnamed fragments as in many
block-based languages.

14.6. Frame-Based Editing of Other Languages
In this paper, we have presented a frame-based editor for a

language very similar to Java (for compatibility, both technical
and pedagogical, with our Greenfoot system). However, the
principles of frame-based editing are independent of this lan-
guage. It is possible to edit any typical programming language
(or structured tree format, such as XML or HTML) with a
frame-based editor.

We note a few features that may make a language more or
less amenable to frames-based editing, starting with issues we
encountered while aiming for Java compatibility:
• Java’s overloading of less-than/greater-than symbols as an-

gle brackets in generic types is not ideal, especially when
combined with the casting syntax. In a type slot, this does
not pose a problem because here these characters always
denote a generic type. But parsing expressions proves more
problematic: Because type casts are not identified by a
keyword, types can appear in expressions. Thus we must
allow having mismatched angle brackets because we must
treat these characters as less-than/greater-than symbols, the
more flexible form.

• Java generally makes little use of whitespace to separate
lexical tokens, which allows us to not require the user to
enter spaces in expressions. We can let the user enter 1+2
or x/3 and let the editor space the expression. Because most
operators have a different alphabet to operands, we can eas-
ily distinguish one from the other. For keyword operators,
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such as “new” and “instanceof”, spaces are still required
between the operator and its arguments. To alleviate this
problem, the instanceof keyword has been replaced with a
symbolic operator in Stride (“<:”). The “new” operator is
treated as a special case. In general, keyword operators are
more awkward than symbols for frame-based editors.

• Java’s lambda expressions remain an open issue for us. A
lambda expression can appear in any expression and contain
arbitrary segments of code. This means that an arbitrarily
complex frame structure could appear in an expression slot.
This may become complicated to display and manipulate.
(For the same reason we also do not support anonymous
inner classes). Devising a manipulation system for this is not
impossible, but complicates the interface. A stricter model
of programming, where statements contain expressions and
no further nesting is possible (avoiding arbitrary levels
of nesting of statements inside expressions) is easier to
implement in frame-based editors.

• Frame-based editing works well where there is an expres-
sion/statement divide, or more generally, a setting where
there is a high-level structure with program units, and a
lower-level expression editing. Although in theory every-
thing in Haskell is an expression and there are no statements,
it would actually be a good fit as you could have frame slots
for monadic ‘do’ blocks, ‘case’ statements, ‘where’ clauses,
individual functions and so on. In Lisp-like languages where
every construct is an S-expression, frame-based editing
would be almost non-applicable because there would be no
apparent way to distinguish what is a frame vs what is a
structured slot.

• Frame-based editing can also be used for non-programming
languages. On similar lines to the previous point, it would
work well for HTML and XML where each element could
be a frame, attributes could be slots, and text content
and sub-elements could go in frame slots. Because each
element has a name (and potentially type information in the
DTD) you could have context-sensitive input assistance. In
contrast, JSON is closer to Lisp S-expressions and would
work much less well. Languages with markup which have
tags rather than begin/end hierarchal structure (e.g. LATEX’s
section commands) would need to be converted to nested
frames to work well.

15. Conclusion
In this project, we set out to build a system that combines

advantages of block-based and text-based systems.
We have designed and implemented an editor for a new,

Java-like language called Stride that incorporates this goal. The
Stride editor demonstrates that such a system can be designed
and that it presents a number of advantages over each of the
competitor systems.

Our initial user studies, on middle-school students and
experienced programmers, suggest that Stride has several ad-
vantages over text-based programming. Users reported that
they found it more readable, and easier to insert new code

and delete existing code. When given the same task, students
using Stride progressed further than students using Java within
the same environment. We continue to iterate and improve the
software in order to address possible weaknesses, such as the
navigation between slots and editing of structured expressions.

The Greenfoot system including the Stride editor is available
for free download at http://www.greenfoot.org/. The same
Stride editor has also recently been incorporated into BlueJ,
which is also available for free download (http://www.bluej.
org/).

15.1. Future Work
There are several avenues for future work. The first is to

perform further user studies and evaluation with the editor.
Computer science education unfortunately produces many new
tools, but little evidence of their effectiveness. We have begun
to address this already with the evaluations reported in this
paper, but we would like further evaluations, carried out either
by ourselves or by others.

A second avenue for future work is to create frame-based
editors for other languages, and/or integrate frame-based ed-
itors into other tools (such as professional IDEs). (We have
frequently been asked if there is a frame-based editor for
Python, or whether the editor is available as an Eclipse plugin,
etc.) We do not have the resources available to perform this
extra technical work, but we would welcome such work by
others.

A third avenue for future work is to build on the new
editor model. We have so far implemented editor interactions
in frame-based editing, but editors in modern IDEs support
several other modes of use, such as debugging and version
control. We believe there is potential to integrate these other
modes of use into a frame-based editor in a better way than
they are supported in current plain-text-focused editors.

Appendix

Appendix: Java vs Stride
In one sense it is difficult to precisely define the difference

between Java and Stride. The characters which form neces-
sary keywords and syntax in Java are often mere decoration
in Stride, which we have kept looking similar to Java. For
example, whether Stride shows round brackets surrounding the
condition in a while loop is a cosmetic decision, whereas those
characters are essential for Java code to be parsed correctly. On
similar lines, Stride has no curly brackets around its scopes,
whereas Java requires them, Stride displays a var keyword
which Java does not use.

Broadly, however, the languages are near-identical. Stride
currently lacks several Java constructs: inner classes, anony-
mous inner classes, synchronised blocks, several advanced
modifiers (such as volatile), enums, and interfaces, although
we are likely to add the latter two. Stride uses <: instead of
instanceof due to the difficulty of distinguishing variable
names from letter-based symbol names, and also disallows
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floating-point literals of the form .5, requiring 0.5 instead.
Semantically, Stride is an unaltered subset of Java: what Stride
includes from Java is identical to Java.
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[24] M. Kölling, N. C. C. Brown, and A. Altadmri, “Frame-based editing:
Easing the transition from blocks to text-based programming,” in
Proceedings of the Workshop in Primary and Secondary Computing
Education, ser. WiPSCE ’15. New York, NY, USA: ACM, 2015, pp.
29–38.
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Abstract The blocks programming community has been preoccupied 
with identifying syntactic obstacles that keep novices from learning 
to program. Unfortunately, this focus is now holding back research 
from systematically investigating various technological affordances 
that can make programming more accessible. Employing approaches 
from program analysis, program visualization, and real-time 
interfaces can push blocks programming beyond syntax towards the 
support of semantics and even pragmatics. Syntactic support could 
be compared to checking spelling and grammar in word processing. 
Spell checking is relatively simple to implement and immediately 
useful, but provides essentially no support to create meaningful text. 
Over the last 25 years, I have worked to empower students to create 
their own games, simulations, and robots. In this time I have 
explored, combined, and evaluated a number of programming 
paradigms. Every paradigm including data flow, programming by 
example, and programming through analogies brings its own set of 
affordances and obstacles. Twenty years ago, AgentSheets combined 
four key affordances of blocks programming, and since then has 
evolved into a highly accessible Computational Thinking Tool. This 
article describes the journey to overcome first syntactic, then 
semantic, and most recently pragmatic, obstacles in computer 
science education.  

1.  Introduction: Programming is “hard and 
boring” 

The statement “programming is hard and boring” made by a 
young girl when asked what she was thinking about 
programming approximately 20 years ago, does not suggest a 
workable trade-off but instead a heartbreaking lose-lose 
proposition. Disappointingly, a recent report by Google [1] 
exploring why women do not choose Computer Science as a 
field of study listed the top two adjectives describing women’s 
perception of programming as “hard” and “boring.” These 
persisting concerns can be interpreted as a two-dimensional 
research space called the Cognitive/Affective Challenges 
Computer Science Education space [2] (Figure 1). The “hard” 
part is a cognitive challenge requiring programming to become 
more accessible. The “boring” part is an affective challenge 
requiring programming to become more exciting. In other 
words, the big question is how does one transform “hard and 
boring” into “accessible and exciting?”  

The research described here is my 20-year journey through 
the Cognitive/Affective space. In the lower left of this space is 
the “compute prime numbers” using C++ and Emacs activity 
which, by the vast majority of kids, is considered to be hard 
and boring. In the upper right corner is the elusive holy grail of 
Computer Science education providing activities that are easy, 
or at least accessible, and exciting. This journey started in the 
lower left corner and is gradually moving towards the upper 
right corner. The path of this journey is not straight. It includes 
setbacks and detours. Also, while progress has been made, the 
journey is far from over.  

 
Figure 1.  The Cognitive/Affective Challenges Computer Science 
Education Space. 

To explore the affective challenge (Figure 1, horizontal axis) 
and better understand the reasons why kids would, or would 
not, want to program, the first question is “What would kids 
really want to program?” Traditional introductions to 
programming based on examples such as computing prime 
numbers are not particularly compelling to most kids. I have 
developed the Retention of Flow instrument [3, 4] to actually 
measure motivation. This instrument was applied to our 3D 
Frogger Hour of Code tutorial and showed that a large 
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percentage of kids want to and can build games even with very 
limited time [5]. But what if kids could program games, robots 
and maybe even simulations? A key to overcome affective 
challenges and broaden participation with respect to gender 
and ethnicity is the support of creativity, ownership and social 
computing [6]. To better understand the rationale behind 
AgentSheets, it may be helpful to travel back in time to clarify 
what it was supposed to be used for.  

I was fascinated by the affordances of spreadsheets. A 
simple grid based structure, containing numbers and strings, 
combined with a formula language resulted in the awesome 
power to enable an unparalleled fleet of end-user programmers 
[7] to create sophisticated computational artifacts. These 
artifacts, in turn, were dealing with an extremely rich set of 
problems ranging from somewhat dry business applications 
such as tax forms to highly entertaining topics such as games. 
What turned gradually into an obsession with grids was 
nourished even further with events taking place around the 
same time.  

In 1988, as a beginning PhD student, I was in charge of 
helping scientists to use the Connection Machine (CM2), an 
intriguing looking, massively parallel supercomputer with up 
to 65,536 CPUs connected up as a 12-dimensional hypercube. 
The SIMD architecture of the Connection Machine 2 (CM2) 
was perfect to compute solutions to problems that can be 
reduced to cellular automata [8] or Mandelbrot sets in real 
time. However, even the intriguing look – a huge black cube 
with a massive panel of wildly blinking red LEDs featured five 
years later in the movie Jurassic Park – could not overcome 
difficult programing obstacles. The scientists of the National 
Center for Atmospheric Research (NCAR) that I worked with 
had concrete needs to run sophisticated weather models. At 
first sight the CM2 appeared to be a dream come true. 
Unfortunately, it was not clear to the scientists how they would 
benefit from a 12-dimensional hypercube. But perhaps even 
more of an obstacle was that the programming models they 
were used to (most of the models they had at the time were 
written in Fortran) did not map well onto the *Lisp-based 
programming model featured by the CM2. This mismatch was 
not limited to the tasks attempted by the NCAR scientists. In 
1994, Thinking Machines, the organization behind the 
Connection Machines, went out of business.  

While the CM2 and *Lisp did not become commercial 
successes, they helped to shape a new parallel mindset to think 
about problems differently. AgentSheets did not attempt to 
replicate the 12-dimensional hypercube topology of the CM2, 
but it did create a highly usable 3-dimensional 3D abstraction 
based on rows, columns, and stacks. Similarly, StarLogo [9], 
which also came into existence as a *Lisp prototype on the 
CM2, also became an end-user modeling environment for 
parallel processes. 

Another milestone in my obsession with grids was the 1989 
game SimCity. In my mind, the computational notions intrinsic 
to spreadsheets, cellular automata, and SimCity-like games 
started to fuse into a single massively parallel, visual, end-user 
programmable computation idea that became AgentSheets. 

Each idea had its own affordances and obstacles. My goal 
became to create a framework that could become a synergetic 
combination overcoming one idea’s obstacle with another 
idea’s affordance. For instance, allowing spreadsheet cells to 
contain animated icons similar to the ones found in SimCity, 
rather than limiting the content to text, could enable end-users 
to create more exciting applications such as games and 
simulations. Cells could contain programmable objects, called 
agents. These agents could do much more than just computing 
numbers. They could move around, change their appearance, 
interact with the user through keyboard and mouse commands, 
play sounds, use text to speech, react to voice commands, and 
many more things. Cells could contain multiple agents that 
could be stacked up. The grid containing these agents became 
the AgentSheet (Figure 2). 

 
Figure 2.  An AgentSheet is a grid containing agents with states in-
cluding depictions. 

Experimenting with agents representing objects such as 
people, animals, building, wires, switches, bulbs, pipes, 
buildings, roads, and cars, it became clear that there was a vast 
universe of exciting applications that could be built with 
AgentSheets (Figure 3). The target audience of AgentSheets 
had shifted from scientists to children. The main reason for this 
shift was that the exploration of the cognition of computing 
required untainted minds. In contrast to the children, the 
scientists had strong preconceptions on the very nature of 
computation based on their experiences with current 
programming languages such as Fortran. I felt that if I wanted 
to explore the cognitive challenges of programming then I 
should start with an audience that did not have any 
preconceived notions of programming flavored by previous 
programming experiences. My research platform was based on 
Common Lisp, a language that is highly malleable for creating 
new programming languages. The programming language I 
designed, AgenTalk, was an object-oriented programming 
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language including Lisp-style syntax to express the behavior of 
agents. AgenTalk was clearly powerful enough to build a huge 
variety of applications including SimCity-like games, agent-
based simulations, cellular automata and even numerical 
applications such as spreadsheets. Unfortunately, yet not very 
surprisingly in hindsight, AgenTalk was too difficult to 
understand even for the many eager children who wanted to 
create their own games. 

 
Figure 3.  AgentSheets Example applications. 

To make programming more accessible and exciting [10], it 
is necessary to understand complex interactions between 
affective challenges and cognitive challenges. Kids may be 
quite excited to build a game, simulation, or robot, but if the 
tools are too complex then there is a good chance kids will give 
up because the return on investment is not clear. AgentSheets 
had turned into a simple but quite promising game and 
simulation authoring tool. However, AgentSheets was in dire 
need of a more accessible end-user programming approach that 
addressed cognitive challenges. Cognitive challenges can be 
broken down into three main obstacles: 

1. Syntactic: is about the arrangement of programming 
language components into well-formed programs.  

2. Semantic: is about helping users with the 
comprehension of the meaning of programs.  

3. Pragmatic is about practical concerns of programming 
languages, including the comprehension of programs in 
the context of specific situations.  

At that time it was not at all clear to me that what I initially 
considered just a minor syntactic challenge should keep me 
busy for the next twenty years. In my initial obsession with the 
syntactic obstacle, it took me a long time to recognize, let alone 
to overcome, the semantic and pragmatic obstacles. 
Unfortunately, too much of the current research and 
development of blocks programming is still focused on the 
syntactic level of challenges. My aim in this paper is to 
strongly encourage blocks programming researchers to shift 
away from syntactic towards semantic and pragmatic 
programming challenges. In my projects, this shift in emphasis 
has been buttressed by some longitudinal research that 
unfolded continuously over 20 years, from informal 
observations in small afterschool programs to large scale 
national and even international implementations, including the 
use of sophisticated evaluation instruments. In this paper, I 
share the lessons that I’ve learned in my journey, with the hope 
that they will be useful in other projects.  

This paper contains six more sections. Section 2 explores 
syntactic obstacles through the lens of the AgentSheets genesis. 
Section 3 defines four key affordances associated with blocks 
programming, and Section 4 puts this research into a much 
wider context of related work by considering these four 
affordances. Section 5 looks at techniques to overcome 
semantic and pragmatic obstacles. Section 6 outlines a vision 
for future research called Computational Thinking Tools. 
Computational Thinking Tools support Computer Science 
education by carefully balancing cognitive and affective 
challenges through the support of the Computational Thinking 
Process (see Figure 19 later).  Section 7 concludes the paper.  

2. Syntactic Challenges and Beyond 
Before I settled on the current form of drag-and-drop blocks 

programming for AgentSheets, I explored a number of 
programming paradigms to overcome syntactic obstacles. 
These obstacles are rooted in the simplicity of creating a 
syntactically wrong program [11]. Being, for instance, just 
“one semicolon away from total disaster” with many traditional 
programming languages can be the source of extreme 
frustration, particularly for novices. This section illustrates 
syntactic obstacles by briefly discussing some of the 
milestones of AgentSheets transitioning from text based 
programming to blocks programming.  

The first approach to overcome syntactic obstacles in 
AgentSheets was rooted in graphical rewrite rules [12-14]. 
Initially, AgentSheets [15] was built with a text-based object-
oriented extension of Common Lisp called OPUS [16]. A Zipf 
distribution analysis [17] of OPUS methods used in 
AgentSheets project revealed that most of the methods used 
were about making agents move, e.g., a car moving on a road, 
or changing their appearance, e.g., a person changing from a 
happy to a sad face. This analysis discovered power laws in 
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natural language word frequency similar to the frequency of 
tools used by a blacksmith [18]. The distribution suggested that 
graphical rewrite rules [12-14] would be a good match because 
they support the most frequent uses of actions (movement and 
change) well. Moreover, by combining graphical rewrite rules 
with programming-by-example mechanisms, these rules could 
be automatically generated to circumvent any kind of syntactic 
obstacle. For instance, a train could be programmed to move 
on a train track simply by selecting it in the scene and moving 
it one step on the track (Figure 4). The first usability test was 
so successful that kids had to be forced to stop and go home 
from the lab. Several iterations of agent-based graphical 
rewrite rules were explored to enable the creation of more 
complex games and simulations. Collaboration between the 
University of Colorado and Apple Computer resulted in several 
prototypes based on the SK8 programming environment [19]. 
The Apple team created a SK8 prototype called KidSim [20], 
which later turned into Stagecast Creator.  

However, an effect that I later described as “trapped by 
affordances” [21] described a shallow learning curve followed 
by a sudden, steep incline. While it had become tremendously 
simple to get started, this approach essentially dead ended at a 
certain level of project complexity when users were trying to 
do more than just having agents move around and change their 
appearance. Graphical rewrite rules were powerful enough to 
create very basic games or animations, but my original goal 
was to create a framework that could also be used for more 
sophisticated games and simulations. Graphical rewrite rules 
fell short of this vision. 

 
Figure 4.  AgentSheets Graphical Rewrite Rule. Double clicking an 
agent would create a local copy of the agent’s situation. Users could 
demonstrate actions such as moving the train on a train track to the 
right. 

A first step towards the exploration of semantics, with the 
goal to overcome the syntactic obstacles experienced with 
graphical rewrite rules, resulted in the creation of semantic 
graphical rewrite rules [22]. Semantic graphical rewrite rules 
enabled users to annotate agents with semantic information that 
could be used to generalize the interpretation of a rule in order 
to avoid huge numbers of permutations. For instance, a 
horizontal piece of road, similar to a wire or a pipe, could be 
annotated to mean that this horizontal symbol represents a 
connector connecting things on the left with things on the right 
and vice versa. AgentSheets can, syntactically and 

semantically, transform agent depictions into all the necessary 
permutations necessary to facilitate generalization. In a 
SimCity-like simulation, the user would only have to draw a 
single horizontal piece of road to have AgentSheets 
automatically generate all the 16 permutations of road pieces 
(straight pieces, turns, T-sections and intersections). The 2^4 
permutations are the result having or not having a connection 
in each direction (up, down, left, right). The transformation of 
the agent depictions applies sophisticated image warping, 
including the bending of icons [23], to the artwork initially 
provided by the user. The transformed icons can be further 
annotated by users. For instance, the dead end road pieces in 
Figure 5 were annotated with road signs. Also, Figure 5 only 
shows 15 our of the 16 road pieces. The road piece connecting 
nothing, i.e., road piece zero, may as well be left off. 
AgentSheets will also apply the semantic equivalents of these 
syntactic transformations to agents, e.g., a horizontal piece of 
road connecting the left with the right, when transformed into a 
vertical piece of road, will connect the top with the bottom. 
The net effect of this idea was that the user would only have to 
draw a single piece of road which could be turned into a 
complex road system, and then program a car with a single rule 
to follow that road. In other words, the design and 
programming of a project that would have taken multiple hours 
to complete could be compressed into a 5-minute task thanks to 
semantics. These ideas are of course not limited to roads but 
apply to any kind of object representing conductivity, such a 
wires conducting electricity or rivers conducting water. 
Programming by analogous examples [24] went one step 
further by allowing users to express analogies such as “a train 
moves on a train track like a car moves on a road” to map 
sophisticated interactions from one context to another. 

  
Figure 5.  AgentSheets can syntactically and semantically bend, inter-
sect, and rotate transform depictions to interpret rules semantically. 

Gradually the notion of blocks as programming language 
components emerged in AgentSheets. In LEGOSheets the 
programming language components became more tangible by 
representing end-user editable [7] rules that users could 
rearrange and modify with direct manipulation [25] interfaces. 
LEGOsheets [22] was an AgentSheets derivative based on 
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spreadsheet-like cells interfacing with sensors and effectors. 
The programming language used in LEGOSheets became the 
first visual programming language for the MIT programmable 
brick. The LEGO Company later created the Mindstorm 
system based on the MIT programmable brick. LEGOSheets 
rules are associated with effectors such as motors. To express a 
rule, a user creates a spreadsheet-like mathematical formula 
referring to sensors.. Clicking on a sensor adds a symbolic 
reference to the rule of the effector to be programmed.  

The approaches described above reduced syntactic obstacles 
through the direct manipulation of objects, the agents, instead 
of typing in text. Unfortunately, not every operation that agents 
are able to perform could be demonstrated through programing 
by example approaches. A different approach making all the 
operations agents can perform accessible to an end-user would 
be to provide these operations as objects – or blocks – that 
users could explicitly manipulate. These blocks should be 
encapsulated objects providing direct manipulation user 
interfaces [25] facilitating simple end-user editing. That is, 
users should be able to move them around, duplicate them, and, 
if they represent operations, control all of their parameters with 
highly accessible user interfaces. For instance, a color 
parameter should not be a piece of text that can be mistyped 
but should be a type interactor, called color, bringing up a 
color selection widget enabling users to pick a color from a 
color palette. The idea of programming language primitives as 
blocks already existed. Blox Pascal [26], for instance, already 
used the notion of puzzle pieces (Figure 6) to represent 
syntactic relationships between primitives. 

 
Figure 6.  Puzzle shaped Blocks in 1984 Blox Pascal. 

Under the title of Tactile Programming [27], AgentSheets 
introduced a form of blocks programming in 1995 (Figure 7) 
by combining four affordances defined in the next section. As a 
tool providing blocks programming to create games and 
simulations, it made a significant step in moving away from 
“hard and boring” toward “accessible and exciting.” Similar 
block approaches were later found in Squeak eToys [28, 29], 
Alice [30], and ten years later in Scratch [31]. Unlike the 
programing approaches discussed above, blocks programming 
has stayed with AgentSheets for over 20 years now. 
AgentCubes [10, 32-35], featuring innovative 3D end-user 
modeling approaches empowering kids to create their own 3D 

worlds, includes sophisticated parallel execution and animation 
models for blocks programming. AgentCubes online is an early 
Web-based 3D game and simulation authoring tool merging 
end-user 3D modeling [36] with end-user programming. 
Common to these tools are three core principles that shaped the 
creation of blocks programming in AgentSheets back in 1995 
[27]: 

1. Composition: A drag-and-drop-based approach was 
employed to aggregate individual programming 
language primitives, called commands, into a whole 
program. This was perhaps the most evident affordance 
of blocks programming. AgentSheets’ aim was not to 
become a general purpose programming environment 
but a Computational Thinking Tool1 [37]. To that end, 
the puzzle piece idea was replaced with a combination 
of color-coded language primitives, e.g., conditions 
versus actions, and syntactic drag-and-drop feedback. 
For instance, the user would get a clear signal through 
an animated cursor that a condition could not be 
dragged into the THEN part of an IF/THEN statement. 
While dragging a block the mouse cursor turns into a 
green positive indicator when a block fits or into a red 
negative indicator if it does not fit at the current 
location. An important concept that is integral to Tactile 
Programming is that blocks can be composed from any 
source including from websites.  

2. Comprehension: A programming block should be able 
to explain itself to a user, similar to the way that 
Rehearsal World [38] could provide explanations for 
parts of a programming-by-example program. As a 
programming object, a block can establish connections 
to objects in the project, i.e., agents. For instance, users 
can drag actions such as a move (right) action onto a 
frog agent to make it move to the right. This is not an 
act of programming but a process supporting 
comprehension. What does this action do to this agent? 
Likewise, conditions can be tested to learn if they are 
true or false. Explanation implies that every block can 
produce an animated description of what it will be doing 
based on its parameter settings or subcomponents. For 
instance, the move (right) explanation would produce a 
spoken explanation, using text to speech, highlighting 
first the “I move” and then saying, while simultaneously 
making the arrow right parameter blink, “to the right.” 
This would make it very clear how each parameter 
contributes to the precise meaning of a command. 
Explaining an IF/THEN statement would explain all of 
its conditions and actions. Explaining a method would 
explain all of its statements. These ideas are explained 
in section 5.2.  

3. Sharing: Each command is a sharable object with a 
canonical textual representation allowing objects to be 
turned  into text and  text into objects.  Current  versions 

                                                             
1 The original term used was Thought Amplifier, which was not well received. 
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of AgentSheets and AgentCubes use an XML representation. 
Using some browser exploits – the Web had existed for only 2 
years at the time – any project, any program, any agent could 
be directly shared by dragging it into the AgentSheets Behavior 
Exchange webpage [39, 40] or dragging it out of there. This 
enabled a high agile style of sharing but it was greeted with a 
lot of skepticism in schools, as the practice of easily sharing 
products, particularly with identifiable authors, was not 
compatible with common school practice.  

3. Four Key Affordances for Blocks Programming  
The next section puts the AgentSheets exploration of syntactic 

obstacles into a much wider context of related work relevant to 
end-user programming. Reflecting back now 20 years, the 
Composition/Comprehension/Sharing framework captured im-
portant aspects relevant to blocks programming. However, to 
meaningfully discuss related work, it makes sense to identify a 
minimal set of affordances that need to be provided in order to 
be considered a modern blocks programming system. The notion 

 

 
Figure 7. 1996 Figure with original caption: (1) Comprehension: test the functionality of commands and 
rules by moving them from the programming world or collaboration world into the application world 
(2a) Direct Composition: select commands and compose them into rules. (2b) Composition by 
Example: compose rules by manipulating the application world (3) Share: share with a community of 
users entire simulations, agents, rules and commands through the World Wide Web. 
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of blocks as representations of programming objects alone is 
not sufficiently discriminatory as blocks can be found in most 
visual programming languages. The value of using the notion 
of blocks programming as a mere synonym for visual 
programming would not be clear.  

When I review the beginnings of AgentSheets in the context 
of other visual programming work that was going on at the 
time, four affordances stand out as being particularly 
important. I may not even have recognized their full 
importance at the time, but do so in hindsight. These 
affordances have turned out to be key aspects of today's blocks 
programming environments. As part of the Compo-
sition/Comprehension/Sharing framework, sharing is a 
powerful idea [39, 40], with important consequences for the 
cognitive as well as the affective challenges, but it does not 
have to be part of the minimal requirements for blocks 
programing languages. AgentSheets combined these four key 
affordances into a highly accessible visual programming 
paradigm. These affordances continue to be at the core of 
popular blocks programming languages [41] such as Scratch 
[31] and Blockly [42]. 

1. Blocks are end-user composable. Simple end-user 
manipulation techniques, frequently drag-and-drop style 
manipulations, are used to compose blocks into 
programs represented as linear, multidimensional, 
hierarchical or other kinds of organizations. The block 
manipulation can be based on two- or three-dimensional 
mouse, gesture or virtual reality interfaces. To be usable 
by end users, the composition process must include 
some scaffolding mechanisms supporting the 
syntactically correct composition of blocks into 
programs. Examples of such scaffolding mechanisms 
include context aware menus (e.g., Alice), animated 
cursors (e.g., AgentSheets/AgentCubes), animated 
insertion points, enabled/disabled screen regions, and 
block shapes/colors (e.g., Scratch) suggesting syntactic 
compatibility.  

2. Blocks are end-user editable. As interactive objects, 
blocks are not just static entities such as icons on a 
computer screen or physical objects such as plastic 
cards but dynamic objects that contain end-user editable 
information. To minimize syntactic challenges, blocks 
will typically employ direct manipulation interfaces to 
implement edit operations. For instance, a color value 
would become end-user editable by using a color picker 
(e.g, AgentSheets and eToys) to select a color from a 
palette instead of using an editable text field to enter 
color values. 

3. Blocks can be nested to represent tree structures. 
Blocks may be composed recursively into tree structures 
to contain blocks, which, in turn, may contain more 
blocks. In AgentSheets, a method block contains rule 
blocks, containing IF and THEN blocks, containing 
condition and action blocks. In Scratch loops contain 
instructions.  

4. Blocks are arranged geometrically to define syntax. 
The semantics of block combinations emerges from 
where blocks are connected by having the blocks touch 
each other directly or be placed in particular positions 
relative to one another (block geometry) rather than 
being linked indirectly by additional explicit graphical 
connectors like lines (block topology). The definition of 
geometry may be aided by jigsaw puzzle appearance 
like in Blox Pascal [26] or Scratch, but does not have to 
be. This distinguishes modern blocks languages from a 
style of visual languages that Lieberman calls “icons on 
strings” [43], epitomized by dataflow languages such as 
LabView.  

Particularly when keeping an eye on educational 
applications, the “end user” aspect of these affordances is 
incredibly important for modern blocks programming 
languages. With the one common goal to make programming 
more accessible, blocks programming languages need to 
provide some evidence of efficacy to validate “end user” 
compliance. Minimally, systems should provide evidence of 
end-user usability. In the case of AgentSheets, validation has 
gone much further. Related to cognitive challenges, the 
Computational Thinking Pattern Analysis research instrument 
[44-48] has shown that users, by building games with 
AgentSheets, can acquire important Computational Thinking 
abstractions, which they can later leverage to build scientific 
simulations [49]. Howland has explored similar Computational 
Thinking transfer in the context of the FLIP game-
programming tool [50]. Related to affective challenges, the 
Retention of Flow research instrument [3] has measured 
motivational levels in Hour of Code activities based on 
AgentCubes online and shown that the “Make a 3D Frogger” 
activity has even exceeded motivational levels of high 
production activities such as the code.org Hour of Code Angry 
Birds activity [4]. Finally, but perhaps most importantly for 
educational applications, the Scalable Game Design project 
[51] has shown with large national studies (student n > 
10,000), that teachers can be sustainably trained [52] to use 
AgentSheets and AgentCubes to the point that they can teach 
students to build sophisticated games and simulations.  

4. Related Work 
This section discusses the genesis of modern blocks 

programming languages through the lens of the four 
affordances above, which address the core problem of syntactic 
challenges. In the context of a variety of concrete programming 
languages, the roles of these affordances will become more 
apparent. The notion of blocks as objects to be used for 
programming emerged early on and evolved gradually, raising 
and, to some degree, answering questions such as: What is a 
block, what does it look like, how does it get manipulated by a 
user, how do blocks relate to each other? Most visual 
languages [53], with their aim to make programming more 
accessible, include some notion of blocks.  

The idea of blocks as visual programming components can 
be traced to early interactive computer systems. In 1962, on 
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one of the first transistor-based computers, a TX-2, Ivan 
Sutherland developed the revolutionary Sketchpad CAD 
(computer-aided design) program to interactively sketch two-
dimensional shapes [54]. Only two years later, also on a TX-2, 
his brother William “Bert” Sutherland employed the idea of 
sketching as the root of a two-dimensional programming 
language [55] implementing an electric circuit metaphor. That 
language was based on data flow and included two-
dimensional components representing mathematical functions 
such as addition and multiplication. These components can 
certainly be considered blocks that were, to some degree, end-
user composable (affordance #1) but the blocks were not 
editable (affordance #2), were not nestable (affordance #3), 
and their semantics did not emerge from the block geometry 
but rather from the explicit connection of blocks. The Grail 
project [56] expanded on this by adding a basic ability to edit 
(affordance #2) blocks through tablet input. Remarkably, for 
that time, input was pen based including letter recognition. 
Later, at a time when through the release of the Apple 
Macintosh mice as user interface devices had just started to 
become more widely available, Minsky already demonstrated 
the use of “finger on screen” gestures [57] as a manipulation 
interface which she used to create a visual programming 
language layered on top of Logo.  

Blocks can represent programming components at syntactic 
and semantic levels. For instance the logic objects in Minsky’s 
system represent AND, OR and NOT gates that feature well-
established semantics rooted in integrated circuits. In this case, 
the shape of a component represents its semantics, i.e., its 
meaning and has nothing to do with its syntax, i.e., how it can 
be combined with other blocks into a well-formed structure. 
An AND gate functions differently from an OR gate and 
everybody with an electrical engineering background is able to 
instantly tell this difference based on the shape of the block. 
The Blox Pascal (Figure 6) system [58], in contrast, was 
perhaps the first system shifting radically from a shapes 
representing semantics to a shapes representing syntax 
visualization model. It employed the notion of jigsaw puzzle 
pieces to present visual clues on how components can be 
combined. In other words, Blox Pascal uses the shape of blocks 
to represent syntax. Most modern blocks programming 
systems, including Scratch, are using the shape of blocks to 
represent syntax.  

This shift from shapes representing semantics to shapes 
representing syntax fundamentally changed the notion of visual 
programming semantics to one where the semantics of 
programs emerged solely on the geometry of blocks 
(affordance #4) and not on the use of explicit graphical clues 
such as lines connecting blocks. In contrast to “icons on 
strings” [43], each modern blocks program consisting of 
connected blocks has a canonical gestalt [59]. In 
AgentSheets/AgentCubes, blocks vertically aligned imply top-
down sequence. Actions in a THEN part of a rule will be 
executed from top to bottom. The geometry of blocks in icons-
on-strings languages is essentially irrelevant. Blocks can be 
placed everywhere and then connected with lines. Of course, 

most programmers will try to strategically position blocks to 
keep connections short and to avoid spaghetti code by 
minimizing the number of lines crossing over each other.  

Affordance #1 (blocks are end-user composable) and 
affordance #4 (blocks are arranged geometrically to define 
semantics) in modern blocks programming languages work 
hand in hand. That is, modern blocks programming languages 
provide manipulation mechanisms including a feedback system 
to support the construction of syntactically correct geometry. 
Blox Pascal-like programming languages employ the jigsaw 
puzzle piece notion to indicate how to properly combine 
blocks. As Glinert [58] and later Lewis [60] indicated, the 
jigsaw approach is limited by lacking flexibility for connecting 
blocks. Each connector can only fit one matching counter 
piece. Polymorphic syntax compatibility is difficult to 
implement with static shapes. Some [58] have suggested 
dynamic shape shifting approaches but without providing 
implementations. Lerner et al. [61] and Vasek [62] have 
implemented polymorphic block connector shapes.  
AgentSheets employs a dynamic cursor approach that shows a 
green positive cursor where blocks can be added and a red 
negative cursor where they cannot. This approach is further 
supported by strategically positioning blocks palettes. In 
AgentCubes, the conditions palette (see later in Figure 12) is 
immediately next to where conditions go and, likewise, the 
actions palette is immediately next to where actions go.  

There are many drag-and-drop programming systems using 
some kind of blocks, but they only implement a subset of 
affordances #1-#4. TORTIS by Perlman [63] was an early 
system that came very close to modern blocks programming. In 
addition to featuring direct manipulation interfaces consisting 
of physical button boxes to control a mechanical turtle, 
TORTIS featured a so-called slot machine for programming. 
Slot machines were boxes representing procedures defined by 
the arrangement of plastic cards. These cards can be considered 
blocks in the sense that they represent program instructions 
such as move forward or turn. TORTIS featured blocks that 
can be composed physically (affordance #1), that have a 
limited sense of nesting (cards could not contain other cards 
but a card could be a placeholder for another box containing 
more cards: affordance #3), and the sequence of program steps 
was determined by their geometry (affordance #4). However, 
instructions were not editable (affordance #2). ChipWits [64] 
was a robot control game providing powerful control flow 
based on graphical instruction tiles to program robots. The tiles 
were drag-and-drop composable (affordance #1), but individual 
tiles were not editable (affordance #2) nor was there a nested 
notion of tiles (affordance #3), and the program control flow 
was determined by explicit arrows and not the geometric 
location of blocks (affordance #4). Logoblocks implemented a 
Logo-based visual programming language to control simple 
robots [65]. Logoblocks did provide blocks that were drag-and-
drop composable (affordance #1), did have nested blocks, e.g., 
the REPEAT block (affordance #3), and featured blocks that 
were arranged geometrically (affordance #4). However, it had 
a limited notion of block editability (affordance #2).  
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Two systems stand out with respect to blocks that are 
recursive (affordance #3). Boxer, a programming system aimed 
at “nonprogrammers” [66], focused on boxes as nested 
containers of code, data or images. Boxes in Boxer are blocks 
that can be composed through drag and drop (affordance #1), 
can be nested (affordance #3), and are arranged geometrically 
(affordance #4). The only shortcoming with respect to modern 
blocks programming languages was its lack of end-user editing 
(affordance #2). Users could edit the content of a programming 
block, but in order to do so they had to know textual 
programming. Similarly, Janus [67] had a very strong sense of 
recursion. However, it was not focused so much on the 
recursive construction of user created programs but the 
animated execution of recursive algorithms.  

Following AgentSheets, a growing list of modern blocks 
programming languages emerged providing all four 
affordances. In chronological order of their creation, not 
necessarily in order of their publication, some of the important 
systems are briefly listed here. eToys is a blocks programming 
extension to Squeak [29] that emerged in 1997. Around the 
same time the Alice system provided accessible programming 
for kids [30]. Scratch became a popular programming tool for 
creating and sharing animations [68]. Blockly [42], an open 
source blocks programming language, was used in Hour of 
Code tutorials and is now used in a number research projects 
creating custom blocks programming languages.  

Programming by Example (PBE) is the idea that programs 
can be automatically created by observing users manipulating 
worlds instead of writing programs [69]. The notion of blocks 
is somewhat secondary to PBE as, at least initially, the idea 
was that programs that were generated through user 
manipulations should be hidden from users. Some tried to 
avoid the need for explicit program representation by keeping 
PBE demonstrations and resulting programs short. Rehearsal 
World [38] provided a very simple programming-by-example 
approach in which users would demonstrate one step. For 
instance, they could start recording, select a button and then 
describe the action to associate with that button. Others, 
including Halbert [70], explored approaches to make recorded 
programs explicitly available to users. His specific aim was to 
make PBE more useful by enabling users later to add control 
structure to a recorded program. Providing affordances #1 and 
#2, one of the few PBE systems that came close to a modern 
blocks programming language was Pygmalion [71]. It did 
provide the notion of block through its representation of icons 
as placeholders for programs. Users could enter data, typically 
numbers, which then they could operate on through the explicit 
application of operators and record the computation. 
Conceptually speaking, nothing would prevent PBE systems 
now from being combined with modern blocks programming 
languages to provide all four affordances. However, perhaps 
due to the perception that modern blocks programming 
languages are already highly accessible, PBE research appears 
to have lost some momentum particularly for educational 
applications.  

Not qualifying as modern blocks programming languages 
because their semantics do not emerge from the geometry of 
blocks (affordance #4), there are numerous visual 
programming languages based on the icons-on-strings 
approach. The majority of these languages employed 
connections between blocks to express either data or control 
flow. Data flow has been particularly popular. Especially early 
versions of data-flow-based visual programming languages 
tried to aim at a really wide scope of application, proposing 
data flow as a general purpose programming model. Prograph, 
for instance, is a general purpose data flow visual 
programming language including strong typing and other 
properties of object orientation such as multiple inheritance 
[72]. VisaVis [73], employing an implicit type system, 
demonstrated that it was able to express algorithms such as 
Quicksort more compactly than Prograph. Other systems 
developed a more task specific [74] perspective of 
programming. DataVis [75], for instance, was a data-flow-
based visual programming environment helping users to create 
visualizations of scientific data. In spite of their overall limited 
use in Computer Science education, some icons-on-strings 
programming languages are very popular. LabView, for 
instance, is used by many professional programmers working 
on embedded systems and robots [76]. 

Some visual programming languages have experimented 
with different manipulation mechanisms for block composition 
(affordance #1). For instance, the CUBE programming 
environment [77] has proposed a three-dimensional 
programming language to be embedded in a virtual reality 
environment. This would allow users to compose Prolog-style, 
Horn-clause based programs by grabbing, placing and moving 
components in three-dimensional worlds. AgentCubes, the 3D 
cousin of AgentSheets, in contrast, enables users to build 3D 
worlds but it only uses two-dimensional programming.  

Domain-oriented programming and design environments 
[78] employ more abstract blocks including appropriate 
composition approaches (affordance #1). In these 
environments, blocks would not represent the traditional 
computer programming language components such as loops or 
conditional statements but rather components inspired by 
objects known to users in specific problem domains. Similarly, 
the process of composing would often not be perceived as or 
called programming but as a process of design. Construction 
kits, for instance, present users with design components that 
can be assembled at a problem domain abstraction level. The 
Pinball construction kit [78] provides users pinball components 
such as bumpers and flippers to design working pinball 
machines. Similarly, the Incredible Machine [79] provides 
users with design components that they can arrange into Rube-
Goldberg-like puzzles. AgentCubes online provides an even 
wider range in the Consume çè Create spectrum [49] by 
integrating ideas of construction kits with blocks programming. 
AgentCubes online differentiates between play, design, and 
edit mode, providing not only components but also a 
mechanism to design and program these components. For 
instance, in edit mode users can create a SimCity-like world 
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consisting of components such as roads, buildings and cars. At 
the edit level, users would have to also provide the program to 
express the behaviors of these domain-oriented components, 
such as the cars following roads. At the design level, other 
users could clone a SimCity-like project to design their own 
city, similar to using existing SimCity like games. In contrast 
to the Pinball Construction Kit and the Incredible Machine, 
however, AgentCubes users would still be able to access the 
lower level programming if so desired. This may be useful to 
mod [80] the component’s behavior.  

Domain-orientation is not limited to construction kits but 
includes text as well as visual programming-based languages 
aimed at specific application domains. StarLogo 
TNG/StarLogo Nova is domain oriented towards the end-user 
programming of simulations [81]. Similar to AgentSheets and 
AgentCubes, this domain-orientation manifests itself in the 
support of simulations. Both systems, for instance, scaffold the 
typical simulation operations such as being able to count all 
instances of a class and plot these numbers or export them to 
spreadsheets (see later in Figure 26).  

5.  Shifting Focus to Semantic and Pragmatic 
Obstacles 

Now, after 20 years of experience with designing drag-and-
drop blocks programming languages and conducting large 
scale, national and international teacher training, I can reflect 
on the relevance of affordances and obstacles introduced in 
blocks programming. A key problem of the blocks 
programming community is its preoccupation with syntactic 
affordances and obstacles. The syntactic obstacles of 
programming are quite relevant to novice programmers. Typos 
involving missing or misplaced special characters such as 
semicolons can be the root of deep frustration and may be 
responsible for prematurely terminating the interest of novices 
in programming. However, the approaches that have emerged 
from blocks programming have largely addressed these 
syntactic obstacles. Even traditional text-based programming 
environments have benefited from approaches such as symbol 
completion to manage syntactic obstacles in ways that help 
novices and experts alike. There is a common perception 
among users that programming has not only become more 
accessible but actually is now accessible thanks to blocks 
programming. This is simply not true. An analogy may help. 
Blocks programming overcomes syntactic obstacles in 
programming languages in a way that is similar to how spelling 
and grammar checking overcomes syntactic obstacles in 
natural languages. But just because we have tools such as 
modern word processors, including powerful syntactic tools 
such as spell checking does not mean that we become enabled 
to write meaningful, interesting, and relevant text. In other 
words, if I would instruct a user to “go ahead and write a 
bestselling novel now that you have spell checking” most 
people would agree that spell checking, as a syntactic 
affordance, provides essentially no support towards this 
ambitious goal. The same holds true for blocks programming. 

With the syntactic challenge essentially being resolved, it is 
becoming urgent to dramatically shift research agendas to 
focus on the much harder semantic and pragmatic levels of 
programming languages.  

The following sections describe some of my early 
explorations of semantic and pragmatic affordances that are 
relevant, but are not necessarily limited to, blocks 
programming languages. Importantly, these explorations 
should not be considered end points of investigation but more 
general research directions, including concrete starting points. 
In contrast to syntactic obstacles, some of the semantic and 
pragmatic obstacles are not just incrementally harder to 
overcome, but at some theoretical level may actually be 
impossible to get over in the most general case. For instance, 
the halting problem, which applies to semantic program 
analysis of Turing complete programming languages, suggests 
that there are semantic challenges that are simply undecidable 
in ways that would be impossible to overcome with any kind of 
computing. While this theoretical barrier exists, it does not 
imply the need to give up. Computers have become more 
powerful and more expressive. While faster computers alone 
cannot overcome theoretical barriers, they can enable new 
kinds of user–computer interfaces relevant to programming. 
Employing multiple cores, a computer can now efficiently run 
multiple threads to constantly analyze complete or partial 
programs. Fusing program analysis, program visualization, and 
real-time user interfaces, the powerful combination of 
computer affordances with human abilities can result in 
radically new support mechanisms to make blocks 
programming move beyond syntax. 

My ultimate goal for blocks programming is to reach the 
level of pragmatics described by Webster as “The study of 
what words mean in particular situations.” Blocks are just like 
words in natural languages. Pragmatic support suggests not 
only the notion of blocks executed in the context of other 
blocks, but also of blocks executed in specific situations 
defined by the aggregation of agents/objects comprising 
complex game and simulation worlds. When I program a 
Frogger-like game, what will my frog do when it is in this or 
that situation in the game? The game worlds need to be 
considered part of the programming environment to enable 
these kinds of explorations by the user supported by the 
computer. The following sections outline approaches that have 
been explored to move blocks programming beyond syntax in 
AgentSheets [18, 22, 40, 82-85] and AgentCubes [10, 32-35]. 
As the main tools of the Scalable Game Design curriculum [51, 
86], AgentSheets and AgentCubes include the mechanisms 
described below. They are being used by students around the 
world [87, 88] and have been tested with respect to cognitive 
[47] and affective challenges [3]. 

5.1.  Contextualized Explanations: Support  
Comprehension  

To become more accessible, programs should be able to 
explain themselves. This is relevant to every kind of 
programming, but essential to blocks programming, which is 
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aimed at novice programmers with little or no programming 
experience.  

One approach to increase the self-disclosure [89] of 
programs is to make programming languages more oriented 
towards natural languages. For instance, AppleScript, a textual 
scripting language for MacOS, was intentionally designed to be 
more readable by avoiding special characters and through some 
degree of verbosity. The relatively high AppleScript readability 
is traded off by the obstacle of actually reduced writability. 
Figure 8 shows a sample AppleScript-generated dialog based 
on this script: 

display dialog "Bad news!" with icon 
stop buttons "Okey dokey"  

Figure 8.  AppleScript generated dialog. 

Blocks programming has additional options to make 
programs more self-disclosable without trading off writability 
for readability. Because blocks are objects on the screen, it is 
quite simple to add static or dynamic annotation features, such 
as tool tips, to programming primitives to explain them. Turkle 
has used the notion of “objects to think with” [90], talking 
about objects in the game world such as the Logo turtle. 
However, blocks programming can extend this notion to the 
programming language itself by making its objects, in other 
words the blocks, also objects to think with. This kind of 
thinking can be supported at three different levels:  

Syntax: At the syntactic level, explanation is limited to 
language structure. For instance, an explanation could reveal 
that a condition is part of an IF statement and should not be 
confused with an action that can be executed in the THEN or 
ELSE part of a statement. However, this information would 
not include attempts to define the meaning of a specific 
condition. In most blocks programming languages, this 
information is captured statically through the visual 
representation of a primitive via a shape (e.g., puzzle piece 
approach [26]) or color and/or dynamically, such as through 
drag-and-drop feedback suggesting compatibility of blocks.  

Semantics: At the level of semantics, explanations are often 
implemented through help functions describing the meaning 
of a block. For instance, when engaging Block Help in Scratch 
to explain the set fisheye effect to 4 command (Figure 9), the 
user gets a semantic response in form of a generic help panel 
including a brief description of the meaning of the command 
and the listing of additional options. Importantly, the 
description is not about the specific form, i.e., the particular 
situation of the actual command in question. It does not 

explain what the “fisheye” effect is or the effect number 4 
means in the context of actual situation, e.g., by applying it to 
an example shape created by the user. 

 
(a) specific command 

 
(b) generic explanation 

Figure 9.  A command and its explanation. 

Pragmatics: At the level of pragmatics, explanations need to 
be constructed for the user from the specific context created 
by the user. That is, pragmatic explanations will have to 
interpret all the parameters of a block to dynamically generate 
an explanation about the settings used by the user. The 
pragmatic explanation is not about that type of block in 
general but about the specific block that was edited by the 
user. The benefit of this context information can be significant 
given that some parameters may be difficult to interpret. Users 
can experiment with parameters in support of comprehension. 
Pragmatic explanations allow blocks to be more compact, as 
they allow the use of compact representations, such as the 
arrow in Figure 10 indicating a direction to look for other 
agents. Experience with more verbose, AppleScript-like, 
representations of blocks in AgentSheets [91] suggested that 
they were appreciated by first time users but not liked by users 
with previous AgentSheets experience. The pragmatic 
explanation in Figure 10 is based on a dynamic tool tip-like 
annotation combined (Mac only) with a text-to-speech 
interface. An explanation produces a sentence based on the 
parameters of the block, annotates parts of the sentence in 
Karaoke sing-along style, and simultaneously makes the 
corresponding parameter blink (e.g., the arrow left cor-
responding to the “to my left” part of the sentence).  

Syntactic, semantic and pragmatic explanations are not 
mutually exclusive. For instance, AgentSheets also has a 
traditional command help system providing generic 
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information including examples about blocks in addition to the 
pragmatic explanation. Blocks programming aimed at novices 
should provide all three levels of explanations. 

 
Figure 10.  Pragmatic Explanation in AgentSheet. 

Pragmatic explanations should include program context. For 
instance, to understand how a condition is used in context, one 
can select a rule, an IF/THEN statement containing the 
condition. Using the pragmatic explain function will produce 
an explanation for the entire rule including all of its conditions 
and actions but also including potentially implicit aggregation 
assumptions (Figure 11). For instance, by default in 
AgentSheets, all the conditions of a rule need to be true, i.e., 
they are linked by a Boolean AND. The implicit ANDing of 
conditions is made explicit in the explanation text, which is 
read out through text-to-speech interfaces producing sentences 
such as “If <condition 1> and <condition 2> then …”.  As each 
condition or action is explained, it is selected and animated in a 
Karaoke style highlighting each parameter and its 
corresponding text explanation. Rules are tested top to bottom 
and actions are executed top to bottom. The explanation can 
make these kinds of assumptions explicit to a novice user.  

 

Figure 11.  Explanation of an IF/THEN rule making a car fall down 
when there is nothing below the car. 

Syntonic (the projection of oneself into something or 
someone else) explanations can help users to assume the 
perspective of the object to be programmed [92]. Body-
syntonicity, a term suggested by Papert [93], describes 
experiences that are related to one’s knowledge and sense 
about one’s body. In the context of Logo turtle programming, 
Papert surmised that when students can project themselves into 
the turtle they would experience fewer problems with 
programming it. In my work with AgentSheets, I found 
confusion about perspective was often the source of 
programming problems. For instance, when programming a 
collision between a car and a frog in a Frogger-like game, 
students would often put code that was supposed to be in the 
frog into the car and vice versa. A syntonic approach tries to 
compel students to become the frog when they program it and 
to become the car when they program the car. For similar 
reasons, some science teachers introduced role-play games in 
their gym class for the student to experience being the car and 
the frog. I found that some degree of syntonicity could be 
induced by using explanatory language worded in ways 
suggesting to be the object to be programmed. A non-syntonic 

explanation of the condition in Figure 10 could be “This 
condition is true if the agent sees another agent looking like 
this to its left.” The syntonic explanation, in contrast, suggests 
projection of the programmer into the object to be programmed 
by employing terms such as “I” and “my” resulting in “True, if 
I see to my left an agent that looks like this.” 

 
Figure 12.  AgentCubes putting car into first person mode. 

Programming environments can actively support body 
syntonicity through camera perspectives. Alice [30], for 
instance, does this by using coordinate systems that are object-
relative. AgentCubes, as 3D Computational Thinking Tool, 
moves one step beyond the AgentSheets syntonic explanations 
by literally allowing the programmer to assume the perspective 
of agents to be programmed through camera operations. Every 
agent in AgentCubes can be selected and be set into first 
person camera mode. This can be done too in other 3D tools 
but typically requires more than a just selecting an agent and 
pressing the first person button. In Alice, a user has to write a 
simple program to set the so-called vehicle of the camera to be 
the object to be set into first person. For instance, in a Frogger-
like game, the programmer can become one of the objects that 
move, such as the frog or the car (Figure 12), but also part of 
the scenery, such as agents representing the road or the river. 
The programmer will now see through the eyes of the agent. 
When the agent moves and turns then the camera will move 
and rotate with the agent. This can result in body syntonicity, 
helping programmers to negotiate intricacies of nested 
coordinate systems.  

5.2.  Conversational Programming: Help Predict the 
Future Proactively 

Although computers have become incredibly powerful, 
debugging programs is still an arduous task. Imagine that a 
programmer is working on a game or simulation based on 
many objects, but the program is not behaving correctly and 
requires debugging. Pea [94] conceptualizes the process of 
debugging as “systematic efforts to eliminate discrepancies 
between the intended outcomes of a program [the program we 
want] and those brought through the current version of the 
program [the program we have].” There is a rich body of 
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research exploring debugging and developing highly 
sophisticated debugging tools. For instance, with the ZStep 
system, Lieberman has explored an approach to locate bugs in 
large code bases [95]. However, most of these tools are aimed 
at professional programmers and not at end-user programmers 
[7].  

The computer, of course, cannot read the mind of users to 
access the programs they want. If it could there would be no 
need for the user to write a program to begin with. However, 
consistent with the notion of pragmatics, the computer can 
show what code means in particular situation. Visualizing the 
pragmatics of code, i.e., the program you have, users may be 
able to perceive discrepancies to the program they want. 

Debugging tools for end-user programmers need to be 
simplified and should focus on strategies either preventing 
bugs or at least minimizing the time between creating a bug 
and being able to experience its consequences. The debugging 
of blocks programs can be supported at the syntactic, semantic 
and pragmatic levels.  

Syntax: Fortunately, little work is required at the syntactic 
level because in most cases it can be reasonably safely 
assumed that programs are syntactically correct. 

Semantics: Most blocks programming languages, including 
Scratch and AgentSheets, provide the affordance of testing 
blocks individually. Actions can be executed to explore their 
effects. Conditions can be tested to see if they are true or false. 
Live Programming [96-98], also found in most blocks 
programming languages, enables users to experience the 
outcome of a program by changing in real time – live – a 
running program.  

Pragmatics: Applying the notion of pragmatics from natural 
languages, “The study of what words mean in particular 
situations,” to programming languages results in the study of 
what programs, or fragments of programs, mean in particular 
situations. Pragmatics affordances such as Conversational 
Programming [99, 100] help programmers to explore the 
meaning of programs in the context of very specific situations. 
In order to establish the notion of a situation, a programming 
environment needs to be deeply connected to the 
representation of a simulation world. For instance, it must be 
possible for a user to arrange objects into a situation and 
define an operational perspective define by selecting objects. 
In a Pac-Man game, it must be possible for a user to select one 
of the ghosts in order to experience the meaning of its 
programming from a very specific context of being at a certain 
location in a maze with a Pac-Man and potentially many other 
ghosts. 

My experience with semantic-level debugging tools is that 
they are best in the hands of experienced programmers who are 
typically not the prime audience of blocks programming. For 
instance, programmers used to programming environments 
providing Read Evaluate Print Loop (REPL) functionality 
found in languages such as Lisp, JavaScript and Python, 
understand the benefits of testing programs incrementally. 
Most blocks programming environments already do, or easily 

could, support this type incremental testing. These functions 
have existed in AgentSheets for over 20 years, but I have found 
that without highly explicit prompting, typical students and 
teachers, by and large, simply did not use them. The main 
problem is not that novices have a hard time to use debugging 
functions but that they do not anticipate the usefulness or even 
the presence of such functions. Instead, they are more likely to 
explore variations of their program in the hope to find a fix 
without planning to invoke some kind of debugging tools.  

If users do not take the initiative for debugging, then 
computers should by becoming more proactive. After all, while 
users are contemplating options to remove discrepancies 
between the program they want and the one they have, 
computers, in spite of their multi-gigahertz, multi-core 
supercomputer capabilities, offer essentially no assistance. 
Conversational Programming [99, 100] is a proactive approach 
to harness this computational power to annotate programs with 
pragmatic information, i.e., the study of what the program 
means in a particular situation (Figure 13). The situation is 
described by an agent that is selected inside a complex 
simulation world. For instance, the user may have selected the 
frog inside a Frogger-like game. The situation combines all the 
state information, including the internal state of the frog and 
also the arrangement and states of all the other agents in the 
world. Conversational Programming is acting essentially like a 
proactive programming peer providing pragmatic information 
to the user. Even when the game is not running, Conversational 
Programming analyzes the program of the user-selected object 
in order to provide pragmatic feedback to the user by 
annotating that program (Figure 12 and 13). 

 

Figure 13.  Conversational Programming. A Conversational Program-
ming Agent (CPA) executes the program and provides rich, 
pragmatic feedback to the programmer relevant to objects of interest 
to the programmer. 

Users can experience pragmatics by exploring various 
situations through the interaction with agents and observation 
how the program will respond differently. For instance, the 
user could drag the frog next to red truck (Figure 14) to 
observe which conditions will be true and which IF/THEN 
rules will fire. This helps users to understand why a certain rule 
does fire or why it does not. Rules that do not fire show why 
they do not fire, e.g., because one of their conditions is false. 
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The annotation includes detailed information of which 
condition was false resulting in the entire rule not being 
executable. Users can shift perspective by selecting different 
agents. How will the red truck react to the frog moving to its 
right? The Conversational Programming annotations are 
specific to an agent instance, not its class. If a game includes 
multiple frogs, then selecting different frogs will annotate the 
program of each frog program according to the specific 
situation that frog is in.  

 

Figure 14.  Conversational Programming annotates programs proact-
ively to show the future of the simulation. In this example, the next to 
last rule is highlighted in green indicating that this rule will be 
executed. The frog is about to collide with the red truck approaching 
from the left. A sound will be played, the frog will turn into a bloody 
frog, and then the game is reset. 

The proactive nature of Conversational Programming can 
answer questions that users have not asked yet or would not be 
likely to ask through more traditional, passive semantic 
debugging aids. Some consider this a type of pre-bugging 
[101] (proactive debugging tools). In essence, Conversational 
Programming interprets the current state of a simulation and 
computes the next step of the simulation from the viewpoint of 
an individual agent one step into the future.  

Annotations may not be static because many agent behaviors 
include non-deterministic or time dependent code, e.g., code 
depending on AgentSheets/AgentCubes conditions such as 
percentChance(<percentage>) or onceEvery (<time>). 
Employing these kinds of conditions results in animated 
annotations that show the frequency of a code execution path. 
For instance, in a complex IF/THEN/ELSE IF expression with 
a 10% and a 90% case, the 90% case would turn green more 
frequently than the 10% one. If this dynamic annotation 
becomes too much, users can simply deselect agents to turn 
annotations off.  

Conversational Programming benefits from the simple rule 
structure of AgentSheets/AgentCubes. In contrast to the 
general Halting Problem for most AgenTalk programs, it can 
be assumed, but not determined, that the program will finish. 
That is, each agent evaluates a certain number of conditions 
resulting in the execution of a certain number of actions. For 
these cases, the visualization makes sense. However, even in 
AgenTalk, users can program recursive functions, making it 
impossible to determine if the program would ever halt. 
Nonetheless, even if it cannot be determined that a program 
would halt, Conversational Programming could be 
implemented in general purpose programming languages. This 
would make an interesting area for future research.  

AgentCubes supports both Live Programming and 
Conversational Programming. When a simulation is running, 
because of Live Programming [96, 102], users can change the 
code to experience the consequence of these changes in real 
time. However, when a simulation is not running, because of 
Conversational Programming, users still see the consequences 
of their program changes. Conversational Programming is an 
extension to the Live Programming framework providing more 
control to users. In Live Programming, it can be difficult to 
navigate to a very specific program state to understand the 
precise effects of the program at that one state. Conversational 
Programming, in contrast, allows the experimentation with 
states by suggesting the future of the program without actually 
transforming the current state into the future one. In order to 
avoid tainting the future, or the present, this transformation 
needs to be done carefully, without creating any side effects. 

5.3.  Live Palettes: Make Programming More 
Serendipitous  

Pragmatic support of programming should facilitate 
serendipitous discovery helping with the composition of blocks 
(affordance #1). The purpose of a programming block palette is 
to provide a menu of relevant language primitives to users. 
Syntactic, semantics, and pragmatics levels apply to suggest 
approaches that help users to locate relevant blocks. At the 
syntactic level, separate palettes, color-coding or tab based 
interfaces can be used to sort fundamental categories of blocks, 
e.g., conditions versus actions in AgentSheets/AgentCubes. At 
the semantics level, it typically makes sense to group blocks 
into commands with related meaning. At the pragmatics level, 
again, the main idea is to leverage the notion of context by 
facilitating the location of code relevant to specific situations. 
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Assuming that the world is a complex collection of agents, 
including one selected by the user, pragmatic programming 
block palettes transform from passive containers of blocks to 
live palettes serving as active exploration sandboxes. 
Identically to Conversational Programming, condition blocks, 
for instance, are annotated to show if they are true or false if 
tested by the currently selected agent in its particular situation. 
The element of serendipity comes into play through the 
proactive nature of Live Palettes. All conditions in the 
condition palette can be annotated efficiently by the computer. 
While some programming environments, including 
AgentSheets/AgentCubes and Scratch, support the evaluation 
of individual conditions, the reality is that few users use this 
feature to begin with, and out of the users employing the 
feature even fewer would regularly cycle through all conditions 
just to see which one may be true. This is also a good example 
of how the power of the computer can be harnessed to 
proactively support the programming process. 

Figures 15–17 show how the conditions palette is reacting to 
the user’s changes of the situation by moving the frog in the 
world. First, the frog is below the road, then the user drags it 
onto the first lane of the road and finally to the second lane of 
the road. While the user is dragging the frog around in the 
world the See(left, “red truck”) and Stacked (“immediately 
above”) conditions are updated by having their name turn 
green or red to reflect the truth value of the condition. This 
may provide users serendipitous information that could be 
relevant to design and implementation of programs based on 
situations that the user is exploring.  

Pragmatics makes blocks in block palettes come alive in way 
that helps with composition of blocks (affordance #1). They 
are no longer just dead pieces of code but, instead, are 
dynamically explored as potential candidates for code that 
needs to be written. In other words, with Live Palettes the 
execution of blocks is already relevant to the decision process 
of the user before this user has even written any code. The 
annotation needs to be subtle to avoid overwhelming users with 
potentially irrelevant information. Simply using colors in the 
name of blocks has turned out to be sufficient to serve as 
serendipitous input without becoming intrusive.  

An important concept to convey this type of pragmatic 
information is the responsiveness of the user interface. In his 
seminal work, Michotte [103] explored how people react to 
visual stimuli and noticed that people can actually perceive 
causality, even if connections between cause and effect are 
made up, as long as the manifestations of the effects satisfy 
narrow timing constraints. Similarly, we found that when 
blocks do react swiftly to situation changes, then humans are 
able to perceive a surprisingly large number of parallel changes 
that may result from this change. This is a good example of 
combining computer affordances (using parallel threads to 
bring block palettes to life) with human abilities (to perceive 
causal connections between manipulating a situation and 
perceiving changes) in order to move beyond syntactic support.  

 
 

Figure 15.  Frog is about to cross the street. Stacked (immediately 
above, ground) is true.; See (left, truck) is false. 

 
Figure 16.  Frog is on street next to truck. Stacked (immediately 
above, ground) is false; See (left, truck) is true. 

 
Figure 17.  Frog is on street without a truck heading towards it. 
Stacked (immediately above, ground) is false; See (left, truck) is false 

6. Computational Thinking Tools 
Just as much as the research on blocks programming has not 

received enough attention at the language level for issues of 
semantics and pragmatics, there is an equally critical blind spot 
at the tool level. Going back to the Cognitive/Affective 
Challenges space (Figure 1), tools are essential to mitigate 
some of these challenges, but the very notion of programming 
tools may be too narrow, particularly in the context of 
Computer Science education. The goal of Computer Science 
education is not to write programs but to become 
Computational Thinkers [104]. It is gradually becoming more 
apparent that coding does not automatically lead to 
Computational Thinking. Duncan [105] summarized a pilot 
study with primary school students in New Zealand with 

“We had hoped that Computational Thinking skills would be 
taught indirectly by teaching programming and other topics in 
computing, but from our initial observations this may not be the 
case.” 

The Computational Thinking Process starts before writing 
the first line of code. Over many years, the Scalable Game 
Design project [51] has systematically trained teachers in 
Computational Thinking and evaluated the efficacy of these 
approaches. To adopt to the needs of Computer Science 
education, almost as a side effect, AgentSheets and 
AgentCubes have gradually shifted from being programming 
tools to becoming Computational Thinking Tools [37]. In 
contrast to traditional programming tools, Computational 
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Thinking Tools address a much wider spectrum of the 
cognitive challenges (Figure 18) and provide support for all 
three stages of the Computational Thinking Process (Figure 
19). 

 
Figure 18.  Computational Thinking Tools in the Cognitive/Affective 
Challenges space. 

 
Figure 19.  The Computational Thinking Process. 

The term Computational Thinking (CT), popularized by 
Wing [104], had previously been employed by Papert in the 
inaugural issue of Mathematics Education [106]. Papert 
considered the goal of CT to forge explicative ideas through 
the use of computers. Employing computing, he argued, could 
result in ideas that are more accessible and powerful. 
Meanwhile, numerous papers [107] and reports have created 
many different definitions of CT. Recently, Wing followed up 
her seminal call for action paper with a concise operational 
definition of CT [108]: 

 “Computational thinking is the thought processes involved in 
formulating a problem and expressing its solution(s) in such a 
way that a computer—human or machine—can effectively carry 
out.” 

Based on Wing’s definition, the Computational Thinking 
Process can be segmented into three stages. The example in 

Figure 19 of a mudslide simulation is used to illustrate the 
three Computational Thinking Process stages. 

1. Problem Formulation (Abstraction): Problem 
formulation attempts to conceptualize a problem 
verbally, e.g., by trying to formulate a question such as 
“How does a mudslide work?,” or through visual 
thinking [109], e.g., by drawing a diagram identifying 
objects and relationships.  

2. Solution Expression (Automation): The solution needs 
to be expressed in a non-ambiguous way so that the 
computer can carry it out. Computer programming 
enables this expression. A simple mudslide model can 
be expressed with just a handful of rules. The one rule 
in Figure 19 expresses a simple model of gravity: if 
there is nothing below a mud particle it will drop down. 

3. Execution & Evaluation (Analysis). The solution gets 
executed by the computer in ways that show the direct 
consequences of one’s own thinking. Visualizations, for 
instance the representation of pressure values in the 
mudslide as colors, support the evaluation of solutions.  

The vision for Computational Thinking Tools [37] is to 
support and integrate the three stages of the Computational 
Thinking Process. Certainly, any kind of programming tool can 
be employed for Computational Thinking. End-user 
programming tools, for instance, are focused on the support of 
the solution expression by making programming more 
accessible. However, Computational Thinking Tools should go 
further by providing additional support for the problem 
formulation as well as the problem execution & evaluation 
stages of the Computational Thinking Process.  

Of course, Computational Thinking can be stimulated by 
programming, but a trip from Chicago to Los Angeles can also 
be achieved by walking. Ultimately, one needs to better 
understand the precise goals and potential overhead of specific 
approaches. For instance, if the goal of programming is 
becoming a professional programmer versus a computational 
thinker, then different tools and different scaffolding [110] 
approaches may be necessary. When computing-skeptical 
STEM teachers see simple applications such as a two species 
ecosystem simulations turn into two hundred of lines of code, 
then one should not be too surprised that the adoption of 
programming in STEM courses is still abysmal. Blocks 
programming will not help either if the result is a similarly 
complex deeply nested Escher-esque color puzzle.  

The different needs for programming in education pulls 
programming environments into two very different directions. 
Programming tools are general purpose programming 
environments that can be used for a large variety of projects, 
but most interesting programs quickly become elaborate 
because of accidental complexity [111]. Accidental complexity 
is complexity that cannot be traced back to the original 
problem. In contrast to intrinsic complexity, accidental 
complexity was added through a solution process involving 
certain tools or approaches. Computational Thinking Tools, 
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with their pronounced goal to support the Computational 
Thinking Process, have a more narrow range of projects, but 
they manage coding overhead in ways so that simple 
Computational Thinking can be expressed with little code. Of 
course, programming tools could be used for Computational 
Thinking or Computational Thinking Tools could be used to 
create general-purpose projects, but in either case the mismatch 
between tool and application is likely to cause excessive 
accidental complexity. This complexity, in turn, may simply be 
too much to justify educational uses.  

Computational Thinking Tools and Programming Tools can 
be integrated technically or pedagogically. While most 
beginning mandatory courses with highly constrained time 
budgets may initially be best off to start with Computational 
Thinking Tools, it does often makes sense in later elective 
courses to switch to Programming Tools. There are many ways 
to technically integrate both kinds of tools. An early version of 
AgentSheets included an extremely powerful but also 
somewhat dangerous Lisp block allowing advanced users to 
enter arbitrary Common Lisp to be integrated into their Blocks 
program. With the GP system, Mönig et al. are going a 
different route by attempting to create a general purpose blocks 
programming language powerful enough to implement itself 
[112]. Alternatively, pedagogical integration would employ 
scaffolding approaches to transition from a Computational 
Thinking Tool to a Programming Tool without actually 
integrating tools technically. An example of a scaffolding 
approach is that AgentSheets/AgentCubes can convert blocks 
programs into Java and JavaScript sources respectfully. This 
can help students to understand how to make the transition. 

AgentSheets and AgentCubes are Computational Thinking 
Tools. A first blocks programming prototype of AgentSheets 
implemented a large subset of Common Lisp concepts in order 
to become a programming tool. However, beyond the syntactic 
support of programming, which was important, it gradually 
became clear that, when focusing more on semantic and even 
pragmatic issues, it would be possible to create a conceptually 
different tool that could better support the problem analysis, 
solution formulation, and project expression stages of the 
Computational Thinking Process [104, 108]. A key principle of 
Computational Thinking Tools is that they should reduce the 
need for accidental complexity as much as possible. Guzdial 
reached a similar conclusion in the context of computing 
education [113] by suggesting that “If you want students to use 
programming to learn something else [e.g., how to author a 
simulation] then limit how much programming you use.” The 
affordances related to the reduction of accidental complexity 
can be understood at three different levels: 

Syntax: At the syntactic level, the form of a program can be 
controlled through disclosure mechanisms. For instance, just 
like the &optional directive in Common Lisp declares 
optional parameters, blocks in AgentSheets/AgentCubes can 
have optional parameters. The visibility of these optional 
parameters is controlled through disclosure mechanisms 
(Figure 20). Clicking a disclosure triangle will show/hide the 

optional parameters. Additionally, method blocks, containing 
rules, have disclosure triangles to show/hide their content. 
When the rules are hidden, a method will still show its 
documentation, turning the disclosure mechanism into a 
switch between viewing method implementation or only 
specification. While there are many textual programming 
languages that feature optional or named parameters, this 
concept appears not to have found widespread acceptance into 
other blocks programming languages, with the exceptions of 
blocks programming languages such as Alice [30] and Snap! 
The optional parameter mechanism is relevant to the notion of 
accidental complexity in the sense that optional parameters are 
typically chosen to capture less important or even qualitatively 
different parameters that may not be relevant to understand the 
main function of a program. For instance, in Agent-
Sheets/AgentCubes, in contrast to regular parameters 
describing what should be done, optional parameters are used 
to describe how it should be done. For instance, the required 
direction parameter in the Move action describes which 
direction the agent will move, whereas the animation time and 
animator style parameters only describe animation details of 
the move transition.  

 
Figure 20.  “move” action non disclosed (left). “move” action dis-
closed, showing information relevant for animation control (right). 

Semantics: At the level of semantics, domain-orientation 
[114] is the provision of functions that reflect the needs of 
specific application domains. An Application Programming 
Interface (API) centered around related functions is an 
example. For instance, a set of functions to control a robot can 
be a domain-oriented API where the domain would be 
robotics. APIs are at the root of practically all domain-oriented 
languages, block-based or not. The main angle to reduce 
accidental complexity through domain-orientation is by 
eliminating the need build functions from the ground up. If a 
programming environment is frequently used to create 
scientific visualizations, then it should include domain-
orientation offered through functions highly relevant and 
usable to create these visualizations. 

Pragmatics: According to Webster, in the context of natural 
languages, pragmatics is about “the study of what words mean 
in particular situations.” In programming, this could be 
modified to “the study of what code means in particular 
situations.” For pragmatic support, Computational Thinking 
Tools are challenged to aid programmers to figure out what 
code does in specific situations. In a game context this means, 
for instance, that programmers should be able to manipulation 
the state of a game, i.e., the situation, and get tools that show 
potential impact on the execution of code. At the level of 
pragmatics, accidental complexity that gets in the way of 
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understanding the meaning of code in the context of specific 
situations should be reduced. To that end, it is important to 
understand the degree of structure of a situation. A situation in 
Scratch is the 2D stage containing sprites with certain 
locations and orientations. Similarly, a situation in Alice is a 
3D world containing 3D objects. In both cases, however, the 
situations are essentially unstructured. The locations of 2D/3D 
objects have no intrinsic meaning. AgentCubes, in contrast, 
has a highly structured situation, i.e., the AgentCubes, which 
is a grid of rows, columns, and layers containing stacks of 
agents. The AgentCubes world provides a user interface 
empowering users to edit these 3D grids by placing agents, 
moving and copying agents similarly to how players edit 
Minecraft worlds. As one can witness with spreadsheets, 
structured situations can reduce accidental complexity 
dramatically because with spreadsheets no part of the user 
code is concerned with the maintenance of the cell structure. 
Spreadsheet formulas are merely capturing the functional 
dependence of values contained in cells without the need to 
understand how values are presented to users [115, 116].  

The 15 squares puzzle, shown in Figure 21, is a classic 
children’s toy that can be used to further illustrate the benefits 
of pragmatics. The game consists of sliding 15 numbered 
squares into a sorted arrangement, 1-15, in a 4 x 4 grid. Many 
computer program implementations of the game exist. From a 
Computational Thinking point of view, the core idea is simple: 
click a square next to the hole to make it slide into the hole.  

 
Figure 21.  15 squares puzzle. 

From a coding point of view, however, efforts can vary 
widely. A Python program to implement the “click to slide” 
functionality (e.g., [117]) quickly runs into hundreds of lines of 
code, not including the functionality to solve the puzzle. 
Similar programs, written in other programming languages 
such as Java and even in blocks programming languages, are of 
comparable size. Indeed, some blocks programming languages 
such as Scratch with missing class/instance object models often 
result in even more complex programs because of duplications 
[118]. The point here is not to be negative regarding 
programming tools, but to simply suggest that accidental 
complexity can be a huge overhead for Computational 
Thinking applications that is not automatically solved through 
blocks programming. 

Employing AgentCubes as Computational Thinking Tool, 
the implementation of the 15 squares puzzle will include very 
little coding overhead. The “click to slide” functionality 
requires only four simple rules checking if there is an empty 

spot adjacent to the clicked square and, if so, move into that 
spot (Figure 22). Additionally, selecting squares activates 
Conversational Programming (square #11 was clicked) and 
highlights the fact that #11 can go left. Comparing Python to 
AgentCubes seems hardly fair. In AgentCubes, the notion of a 
grid, animations, and even numbered squares serve as situation 
structure dramatically reducing accidental complexity in a 
similar way that spreadsheets allow its users to focus on math. 
Additional affordances, such as the ability to access attributes 
of agents through spatial references, like in spreadsheets, and 
to express complex parallel animations, facilitate the creation 
of a wide range of projects from simple particle systems to 
games including sophisticated AI with very little code.  

 
Figure 22.  Four rules for 15 puzzle to make agent next to hole move 
into hole. 

Each affordance has some limitations. Spreadsheets are the 
most frequently used end-user programming tools in the world, 
but they are not general purpose programming tools. Nobody 
would want to write a compiler with Microsoft Excel even 
though it may theoretically be possible. Looking at some of the 
incredibly elaborate designs that motivated users come up with, 
e.g., creating sophisticated machines by tediously arranging 
thousands of blocks in Minecraft, it is sometimes not clear 
what kinds of applications tools will afford. The 2D/3D grid 
structure in AgentSheets and AgentCubes is not well suited for 
applications requiring the computation of arbitrary trajectories. 
This would make it difficult to animate to trajectory of a 
cannonball. Even these limitations, however, have not stopped 
some AgentSheets users from implementing projects such as a 
three-body problem that would appear to be clear mismatches 
with the affordances of the tool. 

A playable Pac-Man game (Figure 23), including endgame 
detection and collaborative AI [119] making ghosts collaborate 
with each other, can be created in just 10 rules (Figure 24). 
Due to collaborative diffusion, this game actually includes 
more sophisticated AI than the original game.  
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Figure 23.  Pac-Man Game World. 

These 10 rules implement: 

• Collaborative Diffusion: [119, 120]: rule 1 of the 
background tile diffusing the scent of the Pac-Man as 
(variable P) and rule 2 of the pellet. 

• Ghost hill climbing: rule 1 of the ghost. 

• Game won detection: rule 1 of the Pac-Man. 

• Game lost detection: rule 2 of the Pac-Man. 

• Pac-Man cursor key control: rules 3-6 of Pac-Man. 

• Pellets being eaten: Pellet rule 2. 

To start the diffusion the Pac-Man agent is given a p value of 
1000. (Variables are case-insensitive, so P and p denote the 
same variable.) This is done through an agent attribute editor 
allowing users to edit arbitrary agent attributes. No 
programming is required to set agent attributes. They can be set 
and will be saved when the world containing the agent is 
saved.  

The Flabby Bird 3D game (Figure 25) illustrates a volume 
scroller game (generalizing 2D side scroller games). A basic 
version of this game can also be created in 10 rules. This kind 
of game would be nearly impossible to create with 2D tools 
such as Scratch, but also would be difficult to create with 3D 
tools such as Alice. 

Game design is highly motivational, but not the focus of 
Computational Thinking. AgentSheets and AgentCubes are not 
just about game design but about learning Computational 
Thinking patterns in ways the that they can be leveraged by 
students to build STEM simulations. The Predator/Prey project 
(Figure 26) can also built with just 10 rules to investigate the 
stability of ecosystems. AgentCubes includes plotting tools to 
visualize data and to export it to other tools such as Microsoft 
Excel or Google Sheets for further analysis.  

 
 

 

 

Figure 24.  Complete Pac-Man game including collaborative AI in 
just 10 rules. 
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Figure 25.  AgentCubes Flabby Bird 3D game. 

 
Figure 26.  Predator Prey simulation including data visualization in 
AgentCubes. 

There are downsides to Computational Thinking Tools. The 
scaffolding employed to make Computational Thinking Tools 
practical for classroom use may get in the way of general-
purpose programming. This is a trade-off. Similarly, 
spreadsheets would not be well-suited for creating games such 
as billiards or Pong. And yet, spreadsheets are the number one 
end-user programming tool. At one point, AgentSheets did 
have graphs, but it felt like a confusing kitchen sink. Over 
time, these odd features got removed from AgentSheets.  Other 
data structures are intrinsic to the AgentSheets/AgentCubes 
world. An array is a row, column, or set of layers of an 
AgentCubes world. In other words, the world and its structure 
are the data structure. There are 1D, 2D, 3D arrays that are 
similar to spreadsheets. Additionally, each cell can contain 
stacks of agents. As long as users can establish a conceptual 
match between the problem structure and the 3D row, column, 
layer, stacks metaphor, AgentCubes can serve as an efficient 
thinking and programming tool. But there are clear limits when 
additional functionality begins to erode affordances. Some-
times more is less. 

The threshold between programming tool and a Com-
putational Thinking Tool is not what can and cannot be done 
conceptually but what can be done practically from a 

classroom point of view. Advanced students have built 
sophisticated simulations of 3-body problems in AgentSheets. 
Using a fine grid with hundreds of thousands of agents, this 
can be done, but it goes against the grain of the solution 
structure implied by AgentSheets. Just as a scientific calculator 
can be built with millions of Minecraft blocks by a user with 
thousands of hours at his hands, these solutions could be built 
with Computational Thinking Tools, but they are not practical 
in a traditional educational context.  

Just as the 3D cube with stack structures provides a spatial 
scaffold in the AgentSheets/AgentCubes programming lan-
guage, AgenTalk is a language scaffold that removes many of 
the intricacies (but also affordances) of general-purpose 
programming languages. The rule-based nature of AgenTalk is 
surprisingly versatile. Rules can be grouped into methods that 
can be called through actions.  Method calls can be recursive. 
Event-based programming (e.g., mouse clicks and timers) can 
be expressed. Cloud variables can be used to exchange values 
through the network to create distributed simulations. The 
combination of these features make it possible to cover the 
entire spectrum of Computational Thinking concepts, ranging 
from procedural abstractions over iterations through net-
working.  

Computational Thinking Tools are specifically designed to 
support Computational Thinkers in schools. They scaffold the 
entire Computational Thinking Process. AgentSheets and 
AgentCubes are presented here as early examples of 
Computational Thinking Tools. The main point of this section 
is to suggest a new research direction and to illustrate the 
concept with a concrete starting point. 

7. Conclusions 
The blocks programming community, by and large, has been 

preoccupied with syntactic affordances of programming 
environments. It is time to shift research agendas towards the 
systematic exploration of semantic and pragmatic affordances 
of blocks programming. Syntactic affordances of programing 
languages can be compared to spell and grammar checking in 
word processing. This type of support is highly useful but, 
computationally speaking, trivial compared to the challenges 
ahead attempting to support users to produce meaningful 
programs. The most daunting challenge will be to support 
pragmatics, that is the study of what code means in 
particular situations. To overcome this challenge, new 
approaches require the combination of various promising 
approaches, including program analysis, program visualization, 
and real-time user interfaces. 

A promising direction may be the exploration of what 
exactly situations really are in Computational Thinking Tools. 
In AgentCubes, situations are visible game or simulation states 
including complex 3D worlds that users can interact with. A 
situation should be a tight integration of game and program 
state allowing programmers to navigate fluidly in space and 
time from the code as well as from a world point of view. 
Select objects in scenes, change properties of objects, and 
observe the consequence on the program execution. Select 
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programming primitive and explore their consequent onto the 
world. New research will likely reconceptualize deep 
connections between the program state and the game world.  

Twenty years ago, AgentSheets combined four key 
affordances to create an early form of blocks programming. 
After initially focusing on syntactic affordances, using 
AgentSheets in computer science education, I have 
experimented with approaches to move beyond syntax to 
address semantic and pragmatic obstacles. Three approaches 
are described: (1) Contextualized Explanations to support 
comprehension, (2) Conversational Programming to help 
predict the future proactively, and (3) Live Palettes to make 
programming more serendipitous. Additionally the vision of 
Computational Thinking Tools as a means to support 
Computational Thinking Processes while reducing accidental 
complexity emerging from coding has been outlined.  
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Abstract The ability to express ideas in a computationally 
meaningful way is becoming increasingly important in our 
technological world. In response to the growing importance of 
computational literacy skills, new intuitive and accessible 
programming environments are being designed. This paper presents 
a framework for classifying the ways that block-based introductory 
programming environments support novices. We identify four distinct 
roles that these graphical languages play in the activity of 
programming: (1) serving as a means for expressing ideas to the 
computer, (2) providing a record of previously articulated intentions, 
(3) acting as a source of ideas for construction, and (4) mediating the 
meaning-making process. Using data from a study of novices 
programming with a custom designed block-based language, we 
provide examples of each role along with a discussion of the design 
implications of these findings. In doing so, we contribute to our 
understanding of the relationship between the design of programming 
representations and their ability to support computational literacy. 
The paper concludes with a discussion of the potential for this 
framework beyond block-based environments to programming 
languages more broadly.  

Keywords Block-based Programming, Cognition, Design, Learning 

1. Introduction 
The skills and practices associated with computational 

thinking are critically important for learners in order to be full 
participants in our increasingly technological world [1–7]. 
Central to computational thinking is the ability to encode ideas 
into representations that can be executed by a computational 
device. Through mastering these skills, computational thinking 
can be infrastructural to learning across diverse domains and 
open pathways to new forms of expression. In this way, we 
align computational thinking with diSessa’s [1] notion of 
computational literacy, which envisions a citizenry that are 
both consumers and producers of computational artifacts.  

A key component for both comprehension and generation of 
computational artifacts is the representational infrastructure 
that mediates these processes. This historically has taken the 
form of text-based programming languages, but can also 
include visual programming languages or graphical interfaces 
that support the assembly of instructions [8], or applications 
designed to interpret drawings or glyphs created by the user 
[9]. Block-based programming languages in particular are 

becoming increasingly common in introductory programming 
contexts [10]. 

Each of these representational systems achieves the same 
ends (defining instructions for a computer to follow), but does 
so through very different means that directly influence the 
process. The characteristics of a representational system, 
including the visual presentation, syntax, relation to other 
representational systems, and expressive power, have a direct 
influence on how one goes about accomplishing a task and the 
resulting understanding that develops from that experience [1, 
11, 12]. With the emergence of new forms of end-user 
programming languages and human-centered interfaces, 
providing a framework for categorizing the ways that 
representational tools facilitate these ends is important as it 
provides structure to understand the various roles that features 
of introductory programming languages play. Further, it can be 
used to improve the current generation of programming tools 
and inform the design of the next generation of expressive 
computational media. 

In this paper, we present a framework for categorizing the 
various ways novices use block-based programming languages 
to express their ideas in a computational medium. Through 
analyzing novices playing a program-to-play constructionist 
video game, we identify four distinct usages of the 
programming language: (1) serving as a means for expressing 
ideas to the computer, (2) providing a record of previously 
articulated intentions, (3) acting as a source of ideas for 
construction, and (4) mediating the meaning-making process. 
This paper situates these roles in a larger framework and 
presents vignettes from a study to demonstrate what each use 
looks like when enacted. The contribution of this work is the 
development an empirically grounded framework that can be 
used to structure the study of block-based programing 
languages, advance our understanding of the learning that takes 
place through their use, and inform the design of future 
programming tools and expressive computational technologies. 
In the conclusion of the paper, we expand our focus to include 
non-block-based programming languages and discuss the 
potential broader applicability of the presented framework. 
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2. Orienting Framework 
The constitutive role of language and tools on cognition has 

long been a topic of research. A central theme of Vygotsky’s 
sociocultural theory of mind was the claim that mental 
functioning is mediated by tools and signs. “The sign acts as an 
instrument of psychological activity in a manner analogous to 
the role of tool in labor” [13, p. 52]. diSessa [1] calls this 
Material Intelligence, saying “we can instill some aspects of 
our thinking in stable, reproducible, manipulable, and 
transportable physical form” (p. 6). Work looking at the 
relationship between signs (or more broadly representations) 
and cognition has delineated the particularities of how 
representations are bound up with knowledge, learning, tasks 
and uses [1, 11, 12, 14-16]. Similar work focusing on the 
design of programming languages has shown how various 
features of the representation, be they visual [17, 18], semantic 
[19], or syntactic [20], all influence the ease of use of the 
resulting language. 

In their work on the development of mathematical meaning 
in computational settings, Noss & Hoyles [21] developed the 
theoretical construct of webbing to capture the nature of the 
learning process in rich computational settings. Webbing 
describes a “structure that learners can draw upon and 
reconstruct for support – in ways that they choose as 
appropriate for their struggle to construct meaning” [21, p. 
108]. The construct is intended to capture the full, 
interconnected set of resources available to the learner as they 
progress through their meaning-making endeavor and respects 
the fact that each learner is unique and will leverage different 
features of the language in different ways. Webbing was 
proposed as a way to describe how understanding emerges that 
is consistent with the situated nature of the learning task and 
acknowledges the central role of the tools used in the process. 
This construct is particularly valuable when analyzing the role 
of block-based programming languages in introductory 
learning environments as it provides a way to makes sense of 
the full set of features of the language (semantics of keywords, 
visual display, syntax constraints, etc.) and identify the 
differing roles they play during the learning process and across 
learners [22]. Likewise, it does not demand that each 
component of an environment be considered in isolation, a 
challenge often encountered when trying to study block-based 
programming environments [23]. Bringing this analytic lens to 
the study of block-based programming environments reveals 
that the language primitives and their presentation play a 
variety of roles in helping novices achieve their goals.  

In this work, we bring a representation-as-mediational-means 
lens to block-based programming languages. As such, the unit 
of analysis for this work is not the individual blocks, nor the 
full library of blocks provided by a block-based environment, 
but instead, the unit of analysis is the block-based environment 
in conjunction with the user interacting with it. This is 
consistent with the theoretical construct of webbing and 
recognizes the central role of the learner in the learning 
experience. Thus, the framework and the examples provided, 

treat user and tool as co-constituents in the ongoing learning 
process. This lens brings specific features of the language 
(sematic and syntactic) into focus alongside the environment in 
which it is situated (programming activity and interface) and 
the unique experiences and prior knowledge of the learner. 

Block-based programming environments leverage a pro-
gramming-primitive-as-puzzle-piece metaphor that provides 
visual cues to the user about how and where commands can be 
used as their means of constraining program composition. 
Programming in these environments takes the form of dragging 
blocks into a composition area and snapping them together to 
form scripts. If two blocks cannot be joined to form a valid 
syntactic statement, the environment prevents them from 
snapping together, thus helping to alleviate difficulties with 
syntax while retaining the practice of assembling programs 
instruction-by-instruction. Block-based languages, unlike more 
conventional text-based languages make the atomic unit of 
composition a node in the abstract syntax tree of the program, 
as opposed to a smaller element (i.e. a character) or a larger 
element (like a fully formed functional unit). In making the 
abstract syntax tree node the constructible unit, the building 
block of the representation shifts, giving the user a different set 
of objects-to-think-with [4], and thus providing a different set 
of supports and enabling different types of uses relative to text-
based alternatives. Understanding and giving structure to the 
new roles and affordances of the block-based modality is the 
central objective of this paper.  

In formulating our framework for categorizing the ways that 
novices use block-based languages, we looked to the literature 
and found two distinct dimensions along which mediational 
roles differ that could lead to a productive classification that fit 
our emerging findings. Kaput [24], in his work on the roles of 
symbols in mathematics, identifies two complementary uses for 
the material form of mathematical expressions: “the support of 
internal cognitive processing and communication between 
persons” (p. 160). We categorize this difference as internal 
(cognitive) vs. external (communicative); these categories 
provide the first dimension of our framework. The second 
dimension along which programming representations can differ 
comes from the computer science education literature, where a 
distinction is made between the act of generating a program 
and that of comprehending one [25]. This difference in purpose 
(generative vs. interpretive) forms the second dimension of our 
framework, producing a 2x2 matrix (Table 1). 

Table 1. The 2x2 matrix situating the four roles Block-based 
programming language primitives play in supporting novices. 

 Generative Interpretive 
External 

(Communicative) Means for expression Record of previously 
expressed intentions 

Internal 
(Cognitive) 

Source of Ideas Resource used in 
meaning-making 

 
The four quadrants of this framework delineate the four roles 

we identify in our analysis. The External-Generative role is the 
one most closely aligned with the conventional view of the 
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purpose of programming languages: that of an expressive 
medium with which to encode ideas in a computationally 
executable form. In this role, the user conceives of a general 
idea or specific intention, and then uses the programming 
language to mediate the expression of that idea into a form the 
computer can carry out. The second identified use of the block-
based representation is serving in an External-Interpretive role. 
In this capacity, the modality acts as an external record that 
preserves previous intentions, serving as the memory in the 
distributed cognitive system of the programming environment 
[26]. Unlike the first role, which defines the human-to-
computer interaction, this role captures asynchronous human-
to-human communication in the form of one user reading the 
instructions previous written by others. A third role that 
language primitives can play is acting as a source of ideas for 
constructions, which defines the Internal-Generative quadrant 
of our classification. In this role, the representational system is 
not mediating the expression of an idea, but instead, the 
language itself acts as a resource the user can leverage to form 
new ideas. Block-based languages are particularly well suited 
for this role given the way they are presented, as will be shown 
later in the paper. The final role of this orienting framework is 
Internal-Interpretive, which manifests itself as novices using 
the language as a cognitive resource to make sense of observed 
behaviors. In this role, the author uses the programming 
commands as a mechanism to help decipher and interpret 
observed behaviors of the program, serving as objects-to-think-
with [4] in facilitating the meaning-making process.  

While we see these four roles as distinct, in practice, they are 
often used in conjunction or quick succession as part of a single 
effort. We see this ontology as productive in that each 
dimension suggests a pattern of use for novices and provides a 
lens for studying the ways the representational system is being 
appropriated by the learner. Further, the application of this 
framework can be used to inform the evaluation and design of 
programming languages. This framework is not meant to be 
definitive, but instead is one possible way to categorize novice 
interactions with programming environments.  

Finally, the framework was derived with block-based 
programming environments in mind, but may provide insights 
beyond block-based contexts. This aspect of the framework 
will be revisited at the conclusion of the paper. 

3. Methods 
To develop and validate this framework, we conducted a 

study asking programming novices to play RoboBuilder [27], 
a constructionist, program-to-play game [28] in which writing 
programs is the main mechanism of gameplay (Fig. 1). The 
central challenge of RoboBuilder is to design and implement 
strategies to make an on-screen robot defeat a series of 
progressively more challenging opponents. A player’s on-
screen robot takes the form of a small tank, which competes in 
one-on-one battles against opponent robots equipped with the 
same set of capabilities. Unlike a conventional video game 
where players control their avatars in real time, in 
RoboBuilder, players must program their robots before the 

battle begins. To facilitate this interaction, RoboBuilder has 
two distinct components: a graphical programming 
environment where players define their robots’ strategy, and 
an animated battleground where their robots compete (Fig. 1). 
To implement their strategy, players use a domain specific, 
block-based programming language. The language includes 
movement blocks (ex: forward, turn gun right, 
fire) to control the robot’s motion, event blocks (ex: When 
I See a Robot, When I Get Hit) to control when 
instructions will execute, and control blocks (ex: Repeat, 
If/Then) that can be used to introduce logic into the robot’s 
strategy. RoboBuilder uses an event-based programming 
model where in-game events are linked to the language’s 
event blocks, so that when a certain action occurs (like the 
robot hitting the wall), flow of control of the program is 
passed to the associated event (When I hit a wall). 

 

 
Figure 1.  RoboBuilder’s two screens. The battle screen (top) where 
players watch their robots compete and the construction space 
(bottom) where players implement their robot strategies. 

The data presented in this paper are from 16 RoboBuilder 
play sessions conducted with programming novices ranging 
from middle school to graduate school. The university-aged 
participants were students at a Midwestern American 
university. Two of the younger participants were recruited 
through university connections, while the remainder of the 
participants were recruited through a community center in a 
Midwestern city that serves a predominantly African-
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American, low SES population. Each participant played 
RoboBuilder for at least 40 minutes, resulting in a total of 
roughly 18 hours of interview and gameplay footage and over 
200 robot strategies created.  

The data were collected through one-on-one interviews in 
which a researcher sat alongside the participant as he or she 
played the game. At the outset of a session, the interviewer 
introduced the participant to RoboBuilder, explaining the game 
objective and the components of the game environment. The 
participant was then given a chance to ask questions before the 
actual game play procedure began. The gameplay portion of 
the session proceeded in an iterative, three-phase protocol. 
First, players are asked to verbally explain their intended 
strategies to the interviewer in conversation. Next, they are 
given the chance to implement their proposed strategy using 
the block-based language. Finally, participants click the ‘Go’ 
button, and then watch their robot compete, with the 
interviewer asking them to describe what they observe and 
whether or not it matches their expectations. At the conclusion 
of the battle, the next iteration of the protocol would begin with 
the interviewer asking participants what alterations they plan 
on making to their strategy to progress in the game. This three-
phase cycle was repeated for the duration of the session. 
Throughout the session, the researcher’s role was mainly to 
move the iterations forward by using various prompts to get 
participants to verbalize their thought process. The researcher 
also answered clarifying and technical questions when they 
arose. Each RoboBuilder session was recorded using both 
screen-capture and video-capture software.  

4. Four Roles of Block-based Primitives 
In this section, we provide vignettes and a discussion for 

each of the four roles of the framework. These vignettes are 
intended to demonstrate interactions for each quadrant of the 
framework and act as illuminating examples that can be drawn 
on to inform our thinking about how block-based languages 
support novices.  

4.1. External-Generative: Primitives as an Means for 
Expression 

In RoboBuilder, language primitives serving as a means 
for expression can be seen when a participant uses the 
language to implement an idea that he or she has conceived of, 
but not yet expressed in code. In other words, they are using 
the language to encode their intention so that the computer can 
execute them. An example of the block-based programming 
language playing this role involves Morris 1 , a university 
student with no prior programming experience. At the outset 
of his interview, when asked what his strategy would be, 
Morris responded:  

So, my master plan is to, like, be continuously 
moving, so it's harder to hit. If I get hit, kind of change the 
path so it's different than what you might be expecting 

                                                             
1 All names are pseudonyms. 

however the sequence is running, and then, during that 
path, adjust to what the opponent is doing to hit them.  

He then proceeded with the construction of his robot 
strategy. After six minutes of working, he had produced his 
first program; the first three events of which are displayed in 
Fig. 2. Comparing the strategies Morris articulated in his initial 
remarks to the program he constructed, we can see the blocks 
taking on an expressive role, mediating and enabling the 
computational implementation of his ideas. His “master plan” 
included three distinct ideas, each of which can be seen in his 
resulting program. His first strategy: “be continuously moving, 
so it's harder to hit” is achieved with the Run method of his 
program (left side of Fig. 2). This series of instructions will 
result in his robot remaining in constant motion. Morris’ 
second verbalized tactic: “if I get hit, kind of change the path 
so it's different”, can be found encoded in his When I get Hit 
event block (top right of Fig. 2). These two instructions will 
execute when his robot gets hit and will cause it to change its 
heading and move forward out of the current line of fire. His 
final idea: “adjust to what the opponent is doing to hit them” is 
captured by his When I See a Robot command (bottom right 
of Fig. 2), which makes his robot adjust its gun towards the 
location of his enemy and fire at it. 

 
Figure 2.  The first three events of Morris’ initial RoboBuilder 
program. 

From the first five minutes of Morris’ RoboBuilder session 
we can see how the language primitives can serve as a means 
for expression. A second demonstration of the language 
serving in this capacity occurs roughly twenty minutes into 
Daniel’s RoboBuilder session. Daniel is a tenth-grade student 
with no prior programming experience. After seeing his first 
two robot strategies struggle against the level-one opponent, 
Daniel decided he needed a new approach. He realized he was 
having difficulty locating his opponent; this prompted him to 
propose the following strategy: “since they change the 
position of the robot every time, I won’t know where it’s at. 
So, I just want to make [my robot], like, spin in a circle and 
shoot.” Having verbalized this new idea, Daniel proceeded to 
construct the strategy shown in Fig. 3. 

 
Figure 3.  Daniel’s implementation of his “spin in a circle and shoot” 
strategy. 

The result of these commands is that his robot continuously 
rotates in a circle, shooting whenever the opponent comes into 
view. After trying out his new strategy, the interviewer asked 
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Daniel to describe what his robot was doing, Daniel 
responded: “it's spinning in a full circle, and when he sees the 
robot he's shooting.” In other words, the robot is carrying out 
the strategy that Daniel had just vocalized. Here again we see 
the language primitives serving as a means of expression 
enabling the computer to carry out the intentions of the user.  

These two vignettes were chosen because they provide clear 
demonstrations of the language primitives being used in the 
expressive capacity and serve as examples of the first 
identified role that language primitives can play in a 
programming activity: that of a mediating role between an 
idea generated by a user and a computationally executable 
reification of that same idea. This is a demonstration of 
language primitives being used in an External-Generative role, 
where the end result is a computationally executable form of 
the idea. It is important to mention that this idea-to-
implementation process was not always so direct or easy. 
Often, over the course of our interviews, players either 
struggled to encode their stated intentions, or composed 
strategies that did not match their expressed intentions, at 
times relying on other features of block-based programming 
languages that will be discussed later in this analysis.  

External-Generative: Discussion 
The ability for a programming language to enable users to 

express ideas in such a way as to be executable by a computer 
is an essential feature of the representation, as, by definition, if 
it is not possible to write a program using the representational 
system, it can hardly be considered a programming language. 
That being said, it is certainly not the sole feature, and, 
arguably, not even the most important, as [29] famously says, 
“programs must be written for people to read and only 
incidentally for machines to execute”. Programs, and 
programming languages, serving as a means of expression has 
long been argued as a pedagogical strength of the form [29]. 
This role is akin to the ability for the alphabet to be used to 
express ideas in the written form, the difference being in the 
case of programming languages, the audience is not solely 
another human, but also a computer.  

In this way, programming languages serve as a bridge 
across what Hutchins et al. [30] call the gulf of execution, 
which describes the distance between a user’s goals and the 
expression of those goals using the representations understood 
(and often defined by) the system. The design of the 
representational system can facilitate this bridging role “by 
making the commands and mechanisms of the system match 
the thoughts and goals of the user” (p. 318). In the case of 
RoboBuilder, to support programming novices in expressing 
their ideas with the provided representational system, the 
language primitives were designed to carry semantic meaning 
within the context of the game in such a way as to enable 
players to understand how they could be used. This can be 
seen in the close mapping between the verbal language of the 
player and the labels on the blocks, for example, Morris said: 
“If I get hit” and then used the When I get hit block.  

In the first example, Morris relied on the natural language 
label on each block to select appropriate commands, the 

closeness of mapping to his intentions, and the shape of the 
blocks to facilitate his assembling them into a script. Daniel, 
along with these features, also used feedback from the 
environment in the form of seeing his opponent reposition 
itself, to inform the strategy he devised. All of these aspects 
have been identified as useful features of the block-based 
modality for learners [31]. These different supports designed 
into the language and environment contribute to the webbing 
upon which learners draw in order to support this first use of 
block-based languages. The two examples shown above 
highlight how not all users draw upon the resources available 
in a learning environment in the same way. In this way, block-
based tools and their suite of scaffolds support an 
epistemological pluralism [32]. 

4.2. External-Interpretive: Primitives as a Record of 
Previously Expressed Intentions 

The second role block-based languages can play is that of a 
record of previously expressed intentions, serving in an 
External-Interpretive capacity. After a user writes a program 
(i.e. uses the language in the previously discussed External-
Expressive capacity), the language remains a visible, legible 
artifact that can later be referred back to and read either by the 
original author or other interested parties. Used in this 
capacity, the language serves as a record of previously 
expressed instructions, or as a resource to refer to for mapping 
outcomes onto expressed instructions. An example of this 
usage can be seen toward the end of Anne’s RoboBuilder 
interview. Anne, a third-year undergraduate student, had just 
finished implementing the seventh iteration of her robot, 
during which she introduced the When I get Hit event to her 
strategy in hopes of addressing a weakness she had identified: 
if her robot got hit, it did not move; instead it stayed in place, 
making it easy for her opponent to hit her again. To address 
this issue, Anne decided to have her robot move to a new 
location if it got hit. Fig. 4 shows the two events from Anne’s 
program that are relevant for this episode. 

 

 
Figure 4.  The two events of interest from Anne’s robot strategy. 

After starting a battle with this new behavior in place, her 
robot was behaving as expected until it was hit a few times in 
succession and backed into a wall. Her robot then remained 
pinned to the wall, motionless, getting hit until the match 
ended. Upon seeing this, Anne got a confused look on her face 
and said aloud: “Wait, what happened?” Not being able to 
make sense of what she was seeing based on what she 
remembered programming, Anne, speaking to herself, asked: 
“Wait, but when I run into a wall, what’d I put?” She then 
brought the programming window to the forefront and read 
through her instructions, quickly realizing the bug she had 
introduced. When her robot backed into a wall, her When I 
Run into the Wall logic would instruct her robot to back 
up an additional 300 steps; in doing so it hit the wall again, 
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thus producing an endless loop. To debug her strategy, Anne 
used the programming language in an External-Interpretive 
capacity; she read through the instructions using them as a 
record of her previously articulated strategy to identify the bug 
in her program.  

External-Interpretive: Discussion 
This vignette provides an example of the second role that 

programming language primitives can play during a 
programming task — that of a preserved record of the 
instructions followed by the computer that can later be 
referred to and analyzed. This use falls in the external 
dimension of our ontology as it relies on the communicative 
aspect of the blocks, but unlike the previous vignette, where 
the language was used in a generative capacity, here, Anne 
used the language to accomplish an interpretive goal. With 
computational representational systems, the primary audience 
for a constructed artifact is usually the computer on which it is 
going to be run, but there is also a secondary audience: any 
human tasked with interpreting, modifying, or extended the 
program. Because programs exist as sets of instructions that 
produce dynamic outcomes, it is essential for the language to 
support being read at a later time, either by the initial author or 
by others. Here again it is appropriate to cite [29] and their 
claim that “programs must be written for people to read and 
only incidentally for machines to execute”. While it is being 
run, the written program serves as a blueprint, containing an 
explanation for the resulting behavior.  

In this vignette, without referring back to her program, Anne 
was unable to make sense of what her robot was doing. To 
help her interpret its behavior, she re-read the program she had 
authored; using the language in a mediating role to provide 
guidance on what was happening. In this case, it was the 
original author who was reading her own code, but it is very 
common for programs written by one person to be read by 
others so they can understand, and ultimately use, or extend 
the program. In this way, programming languages serve as a 
means to mediate the expression of ideas as well as serve as a 
record of the ideas already expressed. Through the lens of 
webbing, the permanence of the constructed artifact, the 
previously mentioned closeness-of-mapping of the commands, 
and the visual execution of the program were all designed 
aspects of the environment that helped Anne debug her 
program. One goal for this framework is that it be useful for 
evaluating and improving programming environments.  

In evaluating block-based programming’s ability to be used 
in an External-Interpretive capacity, we see one potential 
direction for future improvement. Prior work has found that 
the block-based representation poorly supports longer 
programs [31]; as program length and complexity grow, the 
block-based modality can make the program more difficult to 
follow. In other words, block-based languages may struggle to 
support the External-Interpretative aspect of programming 
languages. In response to this drawback, new block-based 
tools are being designed to address this shortcoming by 
blending features of block-based and text-based modalities 
[33, 34] or by allowing users to move back-and-forth between 
modalities [35, 36]. 

4.3. Internal-Generative: Primitives as a Source of 
Ideas  

When trying to develop an approach for accomplishing a 
desired computational goal, the language itself can be used as 
a resource. By internalizing the possibilities provided by the 
language, the author can use the language itself to bootstrap 
idea generation for potential solutions. This is one possible use 
of a programming language that falls in the Internal-
Generative dimension of our framework. Block-based 
languages are especially well suited for this use as the visual 
arrangement and pre-defined categorization of the blocks 
make browsing and finding blocks easy. Our example of this 
usage comes from the start of the RoboBuilder interview 
conducted with Beth, an undergraduate student studying vocal 
performance. This was Beth’s response to the initial question 
of how she was going to defeat her opponent: 

Well, I...I don't know, it seems to make sense to have, to 
determine what would happen in every case, so I think I'll 
use these dark red buttons and try and figure out what I 
want to have happen. 

Beth then proceeded to go through each of the Game Events 
blocks (the “dark red buttons” she refers to in the quote), 
using them as a roadmap to develop her strategy. Fig. 5 shows 
Beth’s first completed robot strategy alongside the Robot 
Events drawer that lists the available Game Event blocks.  

  
Figure 5.  On the left, is the Robot Events drawer; on the right is 
Beth’s first implemented Robot. 

What is especially interesting about Beth’s first robot is that 
not only did she implement every event, but the order of the 
events in her program perfectly matches the presentation in the 
Robot Events drawer. The video from her interview shows 
Beth starting at the top of the events drawer and systematically 
working her way through the set of available blocks. This 
suggests that she did not have a clear, unified strategy when 
she began to program her robot. Instead, Beth built her 
program event-by-event, using the commands provided by the 
language to bootstrap the generation of a valid robot strategy. 
In this way, the language primitives supported Beth in 
conceptualizing possible actions that her robot could carry out. 
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Internal-Generative: Discussion 
In this vignette, we see RoboBuilder’s language primitives 

playing a distinctly different generative role than we saw in 
the vignettes in the External-Generative section. Whereas with 
Morris and Anne, the emphasis was on the language serving in 
an external and expressive capacity, with Beth, the primitives 
facilitate an internal, cognitive outcome; serving as a source of 
inspiration for generating ideas for her robot strategy. She 
even states her intention to use the language commands in this 
capacity, saying: “I think I’ll use these dark red buttons…and 
try and figure out what I want to have happen.” Consistent 
with diSessa’s [1] idea of “materially-mediated-thinking”, in 
this episode we see Beth having ideas with the medium, as 
opposed encoding her preconceived ideas into the language. 
The language primitives are mediating her thinking about the 
challenge, seeding the ideation process for how to accomplish 
the in-game programming challenge. This use is further 
facilitated by the ease of testing and visualizing the behaviors 
of the blocks. The use of the language in this capacity also 
relates to Wilensky and Papert’s [11] structuration theory 
linking representation and cognition, as the representation 
itself is making certain ideas more accessible. You can 
imagine that if instead of the descriptive blocks the game 
provides, the language was an abstract set of operations with 
labels like operation1 and state2, then Beth would not 
have been able to use it in the way shown above, even if the 
language had the same computational capabilities. Here, the 
language serves in an Internal-Generative role, facilitating the 
generation of a new idea. When designing programming 
languages for novices, recognizing that primitives serve this 
role is important, as this use can help a novice achieve early 
programming successes. To the growing list of features that 
block-based languages include that support learners, we now 
add the organization and visual arrangement of the full set of 
blocks as another element of the webbing learners can draw 
on. 

4.4. Internal-Interpretive: Primitives as a Resource 
Used in Meaning Making  

The final quadrant of the framework describes programming 
languages serving in Internal-Interpretive roles. In this 
capacity, the language is used as a cognitive tool with which to 
interpret and make sense of the computational task at hand. 
Used in this way, the language need not be visible or even 
present, but instead is employed as a cognitive resource 
through which observed behavior can be understood. This 
vignette, also taken from Beth’s RoboBuilder session, occurred 
during her second battle against the level-one opponent. The 
level-one robot’s strategy is to remain motionless until its 
energy drops below 50, at which point it begins to move. At the 
start of the second battle, as Beth was watching the battle, she 
asked the interviewer when the opponent was going to start 
moving. The interviewer responded “It happens at 50”, which 
prompted Beth to say: 

It happens when it reaches 50? OK, so that robot must have 
something built into it when it reaches 50. OH! There we 
go, so that's what the, that's what the other boxes are for, so 

like if you reach a certain health level you can change the 
actions, oh, ok. 

This brief excerpt shows Beth using the language as a tool to 
mediate her understanding of the opponent’s behavior without 
ever seeing the instructions externally represented. Her 
exclamation “OH! There we go,” suggests a moment of 
revelation, when some piece of the puzzle of how her opponent 
was behaving fell into place. She then explains that the “other 
boxes” (referring specifically to the conditional and robot state 
blocks, a fact that became clear later in the interview) can be 
used to create the behavior her opponent is carrying out. The 
key piece of this excerpt is her stating: “if you reach a certain 
health level you can change the actions.” This description 
maps perfectly onto the program that is controlling her 
opponent (shown in Fig. 6), but, importantly, these blocks are 
not visible to Beth, so she was unable to read the instructions, 
like we saw Anne do in the External-Interpretive vignette. 
Instead, she used the blocks as cognitive tools with which to 
interpret the opponent’s behavior and devise a possible 
explanation for how its stationary-then-active strategy was 
achieved.  

 
Figure 6.  The hidden conditional logic inside the level-one opponent. 

Internal-Interpretive: Discussion 
In this fourth role, we see again how the language primitives 

can be used as objects-to-think-with [4] to support the meaning 
making process. This use fits with the diSessa’s [1] Material 
Intelligence, where symbols serve as cognitive tools with 
which to make sense of the world. Likewise, it matches 
Kaput’s [24] discussion of mathematical symbols and their role 
in delineating and providing structure for the mathematical 
activity at hand. What makes computational representational 
systems, and in particular block-based languages, especially 
capable for being used in the Internal-Interpretive capacity is 
their ability to offer a suite of resources, i.e. the webbing of the 
environment, to facilitate meaning making. This includes the 
ability to incorporate visual cues like color and shape that can 
make it easier to categorize how specific primitives can be 
used, and the embedding of existing, familiar symbol systems 
and representational conventions into the language’s design, 
including natural language labels and mathematical symbols. 
This enables the set of primitives to include semantic hints in 
the form of meaning-carrying labels (such as move forward 
and When I hit a wall) that can bootstrap the cognitive 
process of interpreting observed behavior through the language 
itself.  

5. The Challenge of Designing for All Four Roles 
Recognizing the various roles programming primitives play 

has implications for designers of novice programming 
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environments and introductory programming languages. 
Attempting to design for all four quadrants of the 
Internal/External, Generative/Interpretive framework presents 
a challenge to the designer, as some design decisions made to 
support one usage may be at the expense of another. Each role 
suggests a different set of priorities and considerations for how 
the language should be designed and presented. An example 
from RoboBuilder’s language makes this tension more 
concrete. The set of game events provided in RoboBuilder 
(When I See a Robot, When I get hit, etc.) were 
designed to provide conceptual hooks for players to introduce 
behavioral logic and enable them to use the blocks to guide the 
creation of strategies, as we saw in Beth’s first vignette. 
However, by providing a fixed set of events, the language 
constrains how and when logic can be introduced in the game, 
limiting its expressive capabilities in the External-Generative 
capacity. This type of design decision comes down to a 
question of finding the right grain size for the language 
primitives. This challenge was encountered in the design of 
low-threshold computational modeling tools: “It is critical to 
design primitives not so large-scale and inflexible that they 
can only be put together in a few possible ways…On the other 
hand, we must design our primitives so that they are not so 
‘small’ that they are perceived by learners as far removed from 
the objects they want to model” [37, p. 168]. Finding the right 
size primitives is one of the central challenges for designers 
when creating languages for novice programmers. Our 
decision to provide a standard set of events, as opposed to a 
customizable set, is an example of the design trade-offs one 
encounters when designing a representational system that can 
support all of the roles specified by this framework.  

While the analytic framework we put forth in this paper was 
introduced and discussed as a means of understanding block-
based languages, it need not be tied to that modality, as text-
based or other graphical representations share these four 
distinct uses. While we expect the manifestations of the four 
quadrants would differ with other representational systems, we 
expect the framework would still be illuminating and fruitful. 

6. Conclusion 
When creating a new computational language for novices, a 

diverse set of uses should be considered. By providing a 
classification system for the roles block-based programming 
languages take in for novices, and providing examples of each, 
we seek to provide a set of aspects designers should consider 
when creating new computational tools. We also see this 
framework as a useful lens with which to analyze existing 
computational representational systems. Understanding how 
they are used is an important first step in refining existing and 
designing new tools.  

In our use of webbing as a theoretical construct to ground 
the analysis, the findings were necessarily coupled with the 
block-based language under investigation, but it is easy to 
draw connections from this work to conventional text-based 
languages. Text-based programming languages provide the 
same fundamental capabilities as block-based tools, although 
at times the specifics may differ. As such, we believe this 
framework can be useful when applied to conventional text-

based programming languages, but for now, this remains 
future work.  

The creation of accessible, yet powerful, languages is a 
critical challenge we face in laying the infrastructure for the 
computationally literate society championed at the outset of 
this paper. By recognizing the various roles primitives can 
play in supporting novices in computationally expressing 
ideas, we as designers and educators can begin to develop new 
languages and environments that support these different 
usages to scaffold learners. In doing so, we can make progress 
toward this vision of a computationally literate 21st century. 
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Abstract Blocks-based environments are frequently used in settings
where there is little or no access to teachers. Effective support for
examples in blocks-based environments may help novices learn in the
absence of human experts. However, existing research suggests that
novices can struggle to use examples effectively. We conducted a study
exploring the impacts of example-task similarity and annotation style
on children’s abilities to use examples in a blocks-based environment.
To gain understanding of where and why children struggle, we
examined the degree to which (1) children were able to map a task
to its corresponding example, and (2) their programming behavior
predicted task success. The results suggest that annotations improve
task performance to an extent and that mappings and programming
behavior can begin to explain the remaining problems novices have
using examples.

1. Introduction
Blocks-based programming environments, such as Scratch

[1], App Inventor [2], and Looking Glass [3] have been grow-
ing in popularity. In this paper, we start to explore how novices
use examples in a blocks-based programming environment.
Understanding example use in blocks-based environments is
important because effective example use can: (1) help to
provide learning support for novices who lack access to formal
classes and qualified teachers, and (2) be a useful skill as
programmers transition to more independent projects.

Blocks-based environments are often used by children with
very little programming experience. Due to a lack of qual-
ified computer science teachers [4], children commonly use
blocks-based environments for short classroom projects, extra-
curricular activities, or on their own. As a result, many blocks-
based programmers rely on the programming environments
and related online materials to provide learning opportunities.
Current systems support learning through tutorials [5], games
[6, 7], and intelligent tutoring [8]. However, in order to work
toward a programming goal, novices likely need more context-
specific information like they might find in example code that
is similar to their goal.

Studies have found that programmers of all experience
levels often use example code found online to accomplish
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particular tasks [9–13]. The ability to use examples effectively
is an important skill for programmers to have, as it enables
the programmers to continue to gain new skills as technolo-
gies change. Unfortunately, inexperienced programmers often
struggle when attempting to reuse others’ code [14]. Due to
their difficulties understanding example code behavior, some
novices report referencing example code as a model rather than
adapting it and integrating it into their programs [12, 13]. Yet,
research on programming and examples has primarily focused
on selecting examples [15] or adapting them [16], rather than
the process of example use.

In this work, we ran a study exploring how novice program-
mers use examples. Our first goal was to compare annotation
styles and example-task similarities to understand how these
commonly used styles of examples affect performance. We
measured performance through task success and analogical
mappings. The idea of analogical mappings comes from prob-
lem solving, where an analogical mapping refers to a relation-
ship between corresponding parts of two problems. Often, that
relationship can help a learner to solve a problem by figuring
out how the solution of one problem relates to another problem
they are trying to solve [17, 18]. Likely, using an example to
solve a programming problem requires a mapping between
the two snippets of code. If analogical mappings between
example code and tasks indicate a likelihood to succeed,
systems could use that information to determine when and
how to provide support. In order to not affect the problem
solving process, we collected analogical mappings after users
completed tasks, which may not be able to indicate whether
analogical mappings can predict success during a task. Thus,
we hypothesized that novices’ mappings between tasks and
examples would correlate with task performance, which can
begin to indicate how analogical mappings in programming
relate to task success.

The example styles only had a small impact on both task
performance and analogical mappings, so we performed a
post-hoc analysis that looked at performance in terms of four
“stages” of programming task completion. In blocks-based
programming, programmers often need to (1) manipulate the
GUI, and then (2) locate, (3) insert, and (4) correctly apply
blocks in order to solve programming tasks. We used these
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four stages to investigate two ways of understanding when
novices are having trouble using examples: correctness of
analogical mappings and programming behaviors. We hypoth-
esized that participants’ programming behaviors (i.e. manipu-
lating the interface, editing the code, or executing the program)
will have some predictive power, which we explore using
decision trees.

To investigate these hypotheses, we ran and analyzed a
study looking at novice programmers using examples in a
blocks-based programming environment. Researchers can use
the results of this study to inform the design of ways to
help novice programmers use examples in blocks-based pro-
gramming environments and educational systems for computer
science using examples. The goal of this study is to better un-
derstand novices’ example use in programming by answering
3 questions:

1. How does the interaction of annotations and example
similarity affect novice programmers’ performance on
tasks using examples?

2. To what degree does the ability to map an example and
target problem correlate with task success?

3. To what degree do programming behaviors predict task
success?

2. Related Work
We first discuss related work surrounding examples in

programming and in education. We then discuss how this
work relates to other ways for novice programmers to learn
independently in blocks-based programming environments.

2.1. Support for Programming with Examples
There is a broad range of work on programming with

examples. However, most of it focuses on support for select-
ing appropriate examples or adapting an example for a new
context, but does not look at the problems novices have in
trying to use examples.

Systems focused on assisting in example selection either
help programmers to find better examples or provide them
directly. Specialized search tools for programming enable
users to quickly perform keyword searches over API documen-
tation [19], open-source projects [20–22], and code snippets
presented on web pages [15, 21, 23]. Since keyword searches
can return a large number of irrelevant results, some systems
support specifying more constrained searches [24–28] or pro-
vide suggestions based on the programmer’s current context
[29]. Some programming environments provide access to ex-
amples by including a small set of pre-created examples [30–
37], integrating example search directly into the environment
[19, 20], enabling access to programs created by other users
[1, 38, 39], or using direct manipulation to generate example
code [29, 30, 33]. All of these systems aim to either make it
easier to select an analogous example for a certain problem
or attempt to suggest a useful example. Only one system that
we know of, the Idea Garden, actually frames example use

as analogical reasoning [40]. In the Idea Garden, analogy
is introduced as a strategy for overcoming barriers, but the
analogy was used mainly for selecting an example to use.

Programming systems currently support using examples, as
well as integrating example code. Systems have added anno-
tations as a way of supporting example use. Generally, these
annotations either provide general descriptions of the code as
a whole [15, 40] or provide specific information about certain
parts of the code [16, 30, 41]. Other systems support program-
mers in integrating example code into programs, essentially
removing the need for programmers to create mappings in
order to use an example to solve their problem. For instance,
Codelets provides a widget to allow easy modification of
example code [42], while WebCrystal allows users to select
which combination of features to integrate from an example
[16].

Work on programming with examples is mainly in textual
programming languages and focuses on selecting an example
or supporting example integration, rather than understanding
the issues novice programmers in blocks-based environments
have while using examples.

2.2. Learning From Examples
The idea of supporting example use in order to improve

independent learning opportunities is supported by two areas
of research: (1) educational systems that introduce examples,
and (2) theories of learning from examples. This study used
examples more like programmers would find on the web
because we wanted to simulate the experience of a novice
programmer learning programming outside of a classroom,
but the research on examples in education has inspired design
choices in this study.

A number of educational systems provide support for ex-
ample use [30, 43–45]. There are also systems [46, 47] that in-
tegrate examples into tutorial systems for programmers based
on Caroll’s theory on minimalist documentation [48, 49]. Sim-
ilarly, other systems also provide sets of annotated examples
to support learners, called ‘case libraries’ [50]. Case libraries
provide sets of examples that relate to a problem learners
are trying to solve [51]. This idea is supported by case-
based reasoning theory, which focuses on having students learn
through experiences and reflection [52]. The work on case
libraries for case-based reasoning is limited and does not ad-
dress programming examples. Furthermore, all of the examples
in these systems are designed to fit within educational systems,
rather than considering how novices can use examples to learn
independently. They also do not address different types of
example styles and how they affect novice programmer use.
One study [53] looked at novice programmer example use, but
only for one type of annotation style and mainly focused on
the participants’ descriptions of their difficulties, rather than
on data that could possibly predict success or failure. In the
discussion, we explore the relationship between the results in
the two studies.

Research on learning from examples, such as worked ex-
amples and cognitive load theory, are important to consider
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in thinking about novice programmer example use. Worked
examples are a popular and well studied learning method
found to be more effective than problem solving in some cases
[54]. Worked examples are grounded in cognitive load theory,
which is the mental effort for a novice to learn something new.
Cognitive load theory can be reduced by improving instruc-
tional material, such as worked examples, to focus a learner’s
attention on the steps needed to solve a problem [55]. Worked
examples have been used to teach a variety of topics, including
mathematics [54] as well as programming [44, 56]. One recent
study uses programming worked examples to study the effect
of labels on learning [57]. Worked example research has also
investigated differing degrees of example similarity, finding
that both similar and dissimilar examples can be useful for
learning [58, 59]. The research on worked examples supports
the idea that the use of examples in learning can be highly
effective, but worked examples have been primarily studied in
classroom contexts. More work needs to be done to determine
how the ideas from cognitive load theory and worked examples
can apply to the types of examples programmers would find on
the web, when programmers are more focused on completing
a task than working through educational material.

2.3. Independent Learning for Novice Programmers
There are a variety of blocks-based programming environ-

ments that are used outside of classrooms and often provide
some support for learning without a structured class, such as
games, tutorials, and reuse.

Many blocks-based environments provide tutorials on their
websites, such as Scratch [60] and App Inventor [61], which
both have web pages providing video tutorials to get users
started. However, video tutorials can be hard to use because
it is often difficult to step forward or backward [62]. Fur-
thermore, one study found that tutorials were not as effective
as puzzles for novices for learning [63]. Some blocks-based
environments are games-based, such as Blockly Games [64]
and Code.org [6]. Games have been shown to be effective
learning mechanisms for novice programmers [65], but often
do not allow users to create their own project. Furthermore,
learning through games does not apply to learning more
advanced programming, where example use is critical.

Many blocks-based environments now provide the ability to
share and reuse others’ code, similar to the way experienced
programmers sometimes use example code. Scratch [60] and
Looking Glass [3] provide explicit “remixing” features. App
Inventor [2], Kodu [66] and Touch Develop [67] also allow
users to use other programmers’ projects. However, research
has found that novice programmers often have trouble select-
ing the code they need, which likely makes adapting others’
code difficult for novices [14]. Research has been able to
cluster behaviorally similar visual code for Scratch [68], which
could help novices to find appropriate code more easily in
blocks-based environments, but it is still unclear how to help
them use example code more effectively.

Overall, prior work on examples in programming has fo-
cused on more experienced programmers in text languages.

The research on examples in education supports the idea that
examples can be an effective way for novices to learn new con-
cepts. Novice programming environments provide a variety of
learning supports, but none addresses understanding novices’
behavior when using examples as models for learning.

3. Study
The goal of this study was to better understand novices’

example use by exploring (1) how example similarity and
annotations impact example use, (2) whether successful ana-
logical mappings correlate with task success, and (3) whether
programming behavior can be used to predict success.

For the study, we asked participants to complete twelve
experimental programming and mapping tasks, equally di-
vided between similar and different examples. Participants
were randomly assigned to use examples with one of our
three annotation styles or no annotations throughout all tasks.
Participants completed the tasks in Looking Glass, a blocks-
based programming environment for creating 3D animations,
designed for middle school aged children (see Figure 4). In
this section, we discuss the reasons for our study design and
the details of how we ran the study.

3.1. Study Design Rationale
In this section, we explain how we chose our experimental

materials (example similarity and annotations) and why we
decided to look at how analogical mappings and behaviors
relate to task success or failure.

3.1.1. Example Task Design
We decided to vary the similarity between examples and

task code to simulate the natural variety that would occur
in found examples online. However, analogical reasoning re-
search suggests that learners are more successful at completing
problem solving tasks when they have an example that is
similar to the target problem [17]. This work demonstrates the
utility of two kinds of similarity: surface similarity refers to
the correspondence between superficial features of the problem
and example; structural similarity refers to the correspondence
between the operations necessary to solve the problem and
example [17]. To explore the impact of similarity, we created
two kinds of tasks: similar and dissimilar example tasks.

The similar examples and programs have both structural and
surface similarity because they share a similar code structure.
For instance, in the similar task and example in Figure 1, the
example and the solution use the exact same structure, a Do
together block with two nested statements. For the dissimilar
example tasks, the structures in the examples differ greatly
from the solutions. As shown in Figure 1, the example has a
Do together block with three statements, however the solution
requires two Do together blocks each with two statements.
Additionally, the dissimilar task and example differ in the
types and number of objects used in the Do together blocks.
We hypothesized that participants would be more successful
at completing tasks with similar examples than tasks with
dissimilar examples.

103



Figure 1: The similar and dissimilar example tasks for the simple parallel execution (Do together) task.

3.1.2. Example Annotations

We decided to compare example annotations because they
are a common feature of found examples online, as well as
in examples provided by support systems. Figure 2 shows the
three annotation styles we selected and an example with no
annotation (the control condition).

Below we describe the four annotation styles used in this
study:

Brief Summary: provides a high-level description of code
behavior, but it does not link explanations to individual lines
of code. We selected this type of annotation because it is
used in other systems and example work [15, 40]. We believe
brief summaries could be useful in solving programming tasks
because they can help a user to understand the overall behavior
of the code, which could help with forming mappings and
solving tasks.

Line-Specific Notes: provides descriptions of each salient
line, shown near the associated code. We also selected this
style as a comparison because it is commonly used for pro-
gramming examples [16, 30, 41, 57]. Furthermore, line-specific
notes could help a user who is confused about how a certain
construct works to view information specifically about that
part of the code.

Visual Emphasis: provides a red highlighted outline around
the critical element or elements of the example. We designed
this annotation based on formative testing, in which we found
that simply circling the important part of an example in red
helped novices to solve programming tasks. This could be
because programmers can test the correctness of their code, so
this annotation could provide them with enough information
to identify the code elements involved in the solution so that
they could then use that to try out possible solutions. A benefit
of this annotation style is that it is quick to create and is not
based on writing style, reading comprehension, or language.

No annotation (Control): the code example is shown
without any textual information or highlighting.

3.1.3. Example-Task Analogical Mapping
Based on the idea that analogical problem solving is similar

to completing a programming task using an example, we
hypothesized that having novice programmers complete an
analogical mapping task might provide insight into whether
they correctly completed the task.

Cognitive psychologists define analogical problem solving
as using one provided problem and solution (the base) to solve
another problem (the target) [17, 18]. We believe that novice
programming with examples is most closely related to ana-
logical reasoning in mathematics [69]. To illustrate the model
of analogical problem solving using mathematics, imagine a
student solving problem 3x+2 = 11 using an example 2x-4
= 6, as shown in Figure 3. The student must first map the
parts of the task and example that are related. In this case,
the 3x and 2x are related, the + 2 and - 4 are related, and
the =11 and =5 are related. The example solution might begin
with moving 4 to the opposite side of the equation. Using the
mapping, the learner would similarly subtract the 2 from both
sides of the target equation. The mappings allow learners to
adapt the sequence of steps necessary to solve the problem to
the context of the target problem. In this case, the base and
target problems have high surface similarity, meaning that the
words are similar, making it easy to map the two [70].

Prior work is divided on whether the ability to generate cor-
rect mappings can predict task success. Gentner [18] describes
the structure-mapping theory, which argues that there is a set of
relations in the base problem that is also true for the target. The
analogy is a mapping between the set of relations for the base
and target problems. Gentner’s work suggests that the primary
difficulty associated with solving a problem using an analogy
comes from mapping the example and the target. If participants
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Figure 2: An example shown with three different styles of annotation and with no annotation.

can correctly map the example and target, they are highly
likely to correctly solve the problem. In contrast, Novick
and Holyoak’s research [71] in the context of mathematical
problem solving suggests that while mapping the example and
target problems is necessary, it may not be sufficient to enable
a learner to solve a problem using an analogy. In particular,
when learners need to adapt the example to fit their target
problem, some learners may succeed at mapping but struggle
to construct a full solution [71].

Programming using an example shares some similarities
with analogical reasoning in mathematics: novice program-
mers attempt to use a completed solution, in the form of an
example to develop a related solution. However, there are also
two important differences between analogies in mathematics
and programming. First, novice programmers can incorporate
testing into their problem solving process. Second, program-
ming examples are not analogies in the traditional sense.
Generally, an analogy provides both an analogous problem
and the sequence of steps necessary to arrive at the solution.
However, example code is essentially the completed solution.
Because of these differences, it is important to evaluate how
analogical mappings in programming relate to task success.

In order to understand whether correct mappings correlate

Figure 3: An example of analogical problem solving.

with success for novice programmers, we needed to collect
mapping and task performance. Mapping can be operational-
ized as the ability to define relationships between elements
in the example and target [17]. If a mapping is achieved, it
occurs at some point during the task, possibly before the task is
completed, making it difficult to collect mapping information
without interrupting the task. We chose to collect the data
after the task to prevent the data collection from changing the
problem solving strategy.

3.1.4. Example-Based Problem Solving Process
While previous work suggests that inexperienced program-

mers often struggle to make effective use of example code,
relatively little is known about how novices attempt to solve
problems using example code and what kinds of behaviors
predict success or failure. Characterizing predictive behaviors
may help to identify opportunities for future systems to better
support example use. For instance, knowing whether difficulty
finding specific code blocks is linked to success or failure can
indicate how big of a hurdle the programming environment
is in solving a task. This can be accomplished using log data
from the programming tasks and using decision trees to under-
stand which features predict success and failure. Decision trees
are often used for prediction across many domains, and have
been successfully used in human-computer interaction, such
as in predicting interruptability [72]. We selected this analysis
method after the study was complete to answer questions
about programming behavior generated by the example-task
mapping analysis.

3.2. Study Methods
We gave participants 90 minutes to complete a computing

history survey, a training task, and 12 programming tasks with
examples. The computing history survey asked participants
about their experiences using computers and with program-
ming in the past to confirm that they were eligible for the
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study. Each participant was assigned to one of the four an-
notation conditions. For this evaluation, we used the novice
programming environment, Looking Glass [3]. Looking Glass
has similar complexity to other blocks-based programming
environments in many respects, like having blocks organized
in palettes.

3.2.1. Participants

We recruited 99 participants between the ages of 10 and 15
for our study through the Academy of Science of St. Louis
mailing list. The Academy of Science of St. Louis is an orga-
nization that provides opportunities for members to participate
in science and technology programs city-wide. Community
members also forwarded our email to a newspaper and a home-
school message board on their own. Since this work aims
to address the problems of novice programmers who do not
have access to formal computer science education in schools,
we asked that participants have “minimal” programming ex-
perience, which we defined as 3 or fewer hours. This limit
on the number of hours participants had coding also ensures
that the participants did not have prior experience using the
programming concepts in the tasks.

We analyzed the data for 80 participants (33 female, 47
male, age: M = 11.8, SD = 1.3). Each participant received
a $10 gift card for Amazon.com in recognition of his or her
participation. We excluded 19 participants: 13 had more than
minimal programming experience (i.e. had programmed for
more than three hours); 4 did not complete the study within
the allotted time; and we had 2 study administration mistakes.

3.2.2. Training Task

We asked participants to complete a training task designed
to help familiarize them with the study format and the basic
mechanics of the Looking Glass programming environment.
The training task had two parts: (1) participants completed a
simple program using an example, (2) participants mapped the
example and training program on paper.

To complete the training program, participants assembled
a simple three-line program in the correct order using an
onscreen example. While completing the training program,
participants could reference a mechanics help sheet that pro-
vided an overview of creating a simple program within the pro-
gramming environment. This task was designed to introduce
participants to the format of the programming tasks and basic
interface mechanics. Through pilot tests, we found that this
introduction helped to reduce the number of interface and task-
related problems during the experimental tasks. Participants
were free to reference the mechanics help sheet throughout
all study tasks. There was no time limit for this task, but if
participants seemed stuck, a researcher helped them to com-
plete the task. Participants were also allowed to ask questions
during this task.

After completing the training program, participants also
completed a paper-based analogical mapping task. This map-
ping task asked participants to draw lines connecting elements

in the example code with the introductory program (see Fig-
ure 5). As with the program training task, the mapping training
task familiarized participants with the task instructions.

3.2.3. Programming Tasks with Examples
We next asked participants to complete twelve programming

tasks using examples. The tasks covered six programming
concepts, listed here from easy to difficult: simple parallel
execution, using a for loop, using an iterator within a for
each loop, using an advanced API method unique to Looking
Glass, setting a conditional for a while loop, and using a
function’s return value as an argument to a method call.
For each programming concept, we developed similar and
dissimilar example tasks. See Figure 1 for the similar and
dissimilar example programming tasks for the simple parallel
execution concept.

We chose programming concepts that greatly varied in diffi-
culty to help provide insight into how concept difficulty affects
novices’ abilities to complete the tasks. We designed the
tasks with the understanding that many would be challenging,
especially for novice programmers with minimal programming
experience, leading to an expected low overall task perfor-
mance. This was purposeful because we wanted to explore
both the times when novices succeeded using examples as
well as when they had difficulties. As prior research suggests
that novices are often unsuccessful in using examples, we
included a significant proportion of tasks that our pilot tests
indicated would have a low success rate in order to capture
the challenges novices face when using examples.

As in the training task, each programming task consisted
of: (1) modifying a program using an on-screen example
(see Figure 4), and (2) completing a paper-based analogical
mapping task (see Figure 5).

To complete each programming task, participants needed
to modify an existing program to achieve a stated goal while
meeting task constraints intended to ensure use of the targeted
programming concept. For example, in looping tasks, we
required that participants only add a certain number of code
blocks in order to force them to use a loop in order to correctly
complete the task. Figure 4 shows one programming task used
in the study. Participants had at most five minutes to complete
each programming task. If participants stated that they finished
the task early, a researcher asked them if they were sure that
they fulfilled all of the criteria of the task, but did not tell
them if it was correct or incorrect. We did this to encourage
participants to check their own work and try to make sure
they fulfilled the criteria on their own, as pilot studies showed
that participants sometimes did not always read directions
carefully. We created the tasks and selected time limits based
on formative and pilot testing.

To complete the mapping task, participants drew lines con-
necting code elements in the example to related elements in the
program as shown in Figure 5. There was no time limit on the
mapping task, but participants generally completed mapping
tasks very quickly. Participants completed paper mappings
after each programming task to prevent the mapping task from
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Figure 4: The dissimilar repeat task shown in the (A) Looking Glass programming environment with a (B) dissimilar example. Initially the
(C) actions tab is selected. There are three steps to complete the task, shown with pointers in the figure. Step (1): the user clicks on the
(D) constructs tab to transition from the Exploring & Searching Stage to the Ready-to-Program Stage. Step (2): the user drags the repeat
construct into the code editor to transition from the Ready-to-Program to Assembling Stage. Step (3): the user drags the move statement into
the repeat construct to correctly complete the task.

Figure 5: The dissimilar repeat mapping task completed by a study
participant. We asked participants to connect the (A) example shown
in the task with (B) the initial state of the program by (C) drawing
lines connecting the two.

influencing their problem solving process. We acknowledge,
however, that collecting mappings at the end of the task could
overestimate how many participants had correct mappings
during the tasks. Furthermore, it is possible that not having
a time limit on mapping tasks may have allowed participants
to figure out the mapping at the end of the task.

To account for learning effects, we used a Latin squares
design to assign task orderings across participants. We varied
the order of the six programming concepts using a balanced 6
x 6 Latin square. For each programming concept, a participant

first completed a similar or dissimilar example task for that
concept, immediately followed by the other example similarity
type. For the six concepts, each participant completed three
with a similar example task followed by a dissimilar example
task and three with a dissimilar example task followed by a
similar example task. Each participant saw one of the four
example annotation types for all 12 tasks.

4. Data and Analysis
We analyzed three types of data: program performance,

example-target mappings, and programming behavior.

4.1. Program Performance
We saved participants’ task programs when they finished the

task, which was when they either stated that they were finished
or timed out after five minutes. We graded these final state
programs for correctness using criteria based on previous work
scoring similar programming tasks [17]. We assigned points
for (1) correct usage of the target programming construct, (2)
correct placement of the provided code statements relative to
the target programming concept, and (3) a lack of extraneous
changes. We created rubrics in which participants earned one
point for each correct attribute in these three categories. One
researcher then scored each participant’s programs using the
rubric.
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User Interface Behaviors
Number of UI actions: User interface actions such as exploring a drop down menu, changing a tab stage, etc.
Time performing UI actions: Continuous blocks of user interface actions spaced closer than one second apart.
Number of example actions: The number of times participants interacted with the example (i.e. by mousing over or playing it). It
is important to note that this is, at best, an imperfect indicator of example engagement. While some users moused over or moved
the example while studying it, we also observed participants who were clearly studying the example without use of the mouse.
Time interacting with example: Continuous blocks of interacting with the example using the mouse, spaced closer than one second
apart.
Idle time: The amount of time the participant spent not doing anything. We computed this by looking for periods where the time
between events was greater than fifteen seconds.
Number of scene edits: The number of times the participant changes the scene layout (e.g. moving the camera or changing the
position of a 3D model). None of the tasks required that participants edit the scene, so this is always off-task behavior.
Code Editing Behaviors
Number of irrelevant edits : An irrelevant code edit does not make any progress towards a correct solution and does not touch any
code elements used in achieving a correct solution.
Number of semi-relevant edits: A semi-relevant edit modifies an element of the code that is involved in a correct solution, but does
so in a way that does not make progress towards a correct solution. For example, in the case where a participant needs to replace a
numeric parameter with a call to a function, a semi-relevant edit might change that numeric parameter to a different numeric value.
Number of relevant edits: The number of relevant edits and the time at which the participant first made a relevant edit. We define
a relevant edit as one that makes progress towards a correct solution.
Number of edits: This included all code edits, regardless of type.
Number of tinkering edits: We noticed that when participants gave up on solving tasks, they appeared to frequently transition to
changing unrelated parameter values or experimenting with keyed parameters (e.g. animation styles, duration, etc). This often takes
the form of “what does this do?” style experimentation. We refer to these types of changes as tinkering edits.
Number of executions: The number of times the participant executes their program.

Table 1: Programming behavior features

4.2. Example-Target Mappings
To analyze the mapping tasks, two authors independently

transcribed which components the lines were drawn between
for 14% of participants, reaching high agreement (Cohen’s
κ >.61) for the mappings (κ = .794, p < .001). The authors
then worked independently to transcribe the remaining par-
ticipants’ mappings. This was necessary because in a small
number of cases, it was slightly ambiguous which blocks the
mappings were connecting. We developed a set of correct
mappings consistent with the program solution and recorded
whether the transcribed mappings contained one or more of
these correct mappings, similar to the analysis from Spellman
et al. [73].

4.3. Programming Behavior
In addition to mappings and program performance, we also

recorded log files of the actions that participants took while
working on each task. This includes data such as interface
interactions like opening a palette of blocks, time spent with
their mouse interacting with example, and program modifi-
cations, as shown in Table 1. We use this log information
to compute program solution progress, which we will discuss
throughout our results section to provide more granularity than
just success or failure. Our log parser analyzed participants’
code editing behavior when working towards the solution of
a task. Because each task has a known solution and a known
interface state to reach that solution, we were able to ascertain
whether their actions were relevant to the solution or were in
no way related to the task. We also investigate whether this
log data can predict success or failure on tasks using decision
trees, which we will go into greater detail in the results section.

4.3.1. Program Solution Progress
The majority of our tasks required that participants work

through a series of stages in order to arrive at a solution, which
we will discuss throughout the results section. These stages are
four key parts of a task in a blocks-based environment that we
hypothesized could provide us with more in-depth information
about where novices struggled:

Exploring & Searching Stage: The user has made no
progress towards a solution. Typically, the user is exploring
and searching the interface in an effort to advance their task.
This stage may include both code changes and user interface
actions that do not advance the user towards a solution. This
is an essential part of many new programmers’ experiences
in blocks-based environments, where rather than being able to
type a command, they must explore the environment in order
to find the blocks they need to program.

Ready-to-Program Stage: The user interface is in a state
where the program elements necessary to solve the problem
are accessible. For example, if the user needs to add a loop
to solve a problem, the palette containing the loop code block
is visible in the interface, as shown in Figure 4-(1). For a
blocks-based environment, this demonstrates progress toward
solving a task because it likely indicates that the programmer
has correctly determined which block they need and have also
found it in the interface.

Assembling Stage: Any needed program elements have
been added to the program, but the code is incorrect. Con-
tinuing the loop example, the loop is in the user’s program
but is incorrectly placed or does not contain all of the required
statements, as shown in Figure 4-(2). At this point, in a blocks-
based environment, all the programmer must do is re-arrange
the blocks to create the correct solution.
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Completed Stage: The program is completed and correct,
as shown in Figure 4 after the action in (3).

For each task, we record the time at which a user first
reaches each stage. We note that it is possible that a user
can regress to a previous stage. This commonly happens with
the Ready-to-Program stage because the user may change
the state of the interface away from being ready to solve
the problem. Our stage-based model was a post-hoc analysis
designed to more deeply understand the behaviors affecting
task success. For our stage-based analysis we excluded two
programming concepts: using an iterator within a for each loop
and calling an API method (four of the twelve tasks in total).
These four tasks initially begin in the Ready-to-Program Stage,
instead of the first stage, Exploring & Searching because the
participants did not need to change the state of the interface to
find the component needed to complete the task. We believe
that analyzing the remaining 8 tasks for this part makes sense
because in order to best understand exactly where the problems
are taking place, we want to look at tasks where all four
stages are required for successful task completion. All results
unrelated to our stage-based analysis are based on the data
from all twelve tasks.

5. Results
We seek to answer three questions: (1) how does the in-

teraction of annotations and example similarity affect novice
programmers’ performance on tasks using examples, (2) to
what degree does the ability to map an example and target
problem correlate with task success, and (3) to what degree
do programming environment and coding behaviors predict
task success?

5.1. How do novice programmers perform on tasks
using examples and how do annotations and example
similarity affect performance?

To answer this, we discuss the overall task success, the
effects of annotations on task success, and the effects of
example-task similarity on task success.

5.1.1. Overall Task Performance
Overall, participants completed 30.3% of tasks correctly.

This result generally aligns with our expectation and the
idea that novices often struggle completing tasks using ex-
amples. We will discuss this result further later in the paper.
When completing most tasks, most participants did not move
past the Exploring & Searching Stage (51.6%). Conversely,
most participants failed to reach the correct solution (only
30.3% succeeded). Only 9.8% of tasks ended at the Ready-
To-Program Stage and 8.2% of tasks ended at the Assembling
Stage (as seen in Table 2). We also investigated whether gender
may play a role in task performance by including it as a
covariate in our analysis based on past research on gender in
end-user programming [74]. However, we found no significant
gender differences in any of the statistical tests we ran.

Stage %
Tasks

% Correct
Mappings

%
Tasks

% Correct
Mappings

Ended at Stage Reached Stage
Exploring &
Searching

51.6% 45.6% 100% 55.2%

Ready-to-
Program

9.8% 50.0% 48.4% 65.4%

Assembling 8.2% 56.8% 38.6% 69.3%
Completed 30.3% 72.7% 30.3% 72.7%

Table 2: This table shows the percentages of tasks and mappings
that ended at each stage and reached each stage. The percentage that
ended at each stage shows how many tasks were at a stage when the
tasks were over. The percentage that reached each stage demonstrates
the amount of tasks that that got to each of the stages.

5.1.2. Effects of Annotations
Using MANCOVA and Roy’s largest root, there is a signif-

icant effect of annotations versus no annotation on program
performance, Θ = .35, F(12, 66) = 1.93, p < .05. The three
annotation conditions outperformed the no annotation condi-
tion. Separate univariate ANCOVAs revealed that there are no
significant differences between the three annotation styles.

This effect was also present for the similar example tasks;
participants who used similar examples with any annotation
style significantly out-performed participants without any an-
notations, Θ = .21, F(6, 72) = 2.52, p < .05. However,
we found no significant effect for dissimilar examples and
annotation styles. We would have expected annotations to
assist novice programmers in solving dissimilar example prob-
lems, since the annotations help novice programmers to map
examples and problems. For dissimilar example tasks, partici-
pants may have needed more time to understand the mapping
between the task and the example, which prevented them from
having time to actually complete the task, though they may
have realized how to complete it by the end of the task time.

We also wanted to know whether the annotations had any
effect on which stage participants made it to for their tasks. We
computed the percent of the tasks that finished in each stage,
for each participant. Because the Completed Stage is func-
tionally equivalent to program correctness results presented
above, we report whether the annotations had any effect in
the earlier stages. Using a MANCOVA and Roy’s largest root,
there is a significant effect of annotation versus no annotation
on the stage participants reached, Θ = .10, F(3, 81) = 2.74, p
< .05. Compared to the no annotation condition, participants
with annotations were slightly more likely to finish their tasks
at a higher stage than the no annotation condition. Separate
univariate ANCOVAs revealed that there are no significant
differences between the three annotation styles.

5.1.3. Effects of Example-Task Similarity
As predicted, participants correctly completed more tasks

using similar examples (Mdn = 2.2 of 6 points) than dissimilar
examples (Mdn = 1.83 of 6 points), p < .01, r = -.34. The
low median task scores align with the low overall success
rate. Using a MANCOVA and Roy’s largest root, there is
a significant effect of example-task similarity on the stage,
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Θ = .06, F(2, 168) = 4.78, p < .01. We will discuss how
annotations and example-task similarity affect mappings in the
next section.

5.2. To what degree does the ability to map an exam-
ple and target problem correlate with task success?

First we discuss the overall results for mapping and task
success as well as example similarity, which both support
the idea that mapping and task success are related. However,
it turns out that mappings and performance actually have a
relatively low correlation. Finally, we describe behaviors that
may be influencing the low correlation.

5.2.1. Overall Mapping and Task Success
In the majority of tasks, participants either made no mea-

surable progress towards a solution (51.6% ended the task in
the Exploring & Searching Stage) or correctly completed them
(30.3% ended the task in the Completed Stage). Table 2 shows
the percentage of the total tasks that reached each stage and the
proportions of tasks for the stages that had correct mappings.
While there are some instances in which participants have
identified the necessary code elements and failed to arrive at
a fully correct solution (ending the task in the Assembling
Stage), the ability to modify and test a program appears to
enable those who successfully added the needed code element
to complete the task. We found an increasing proportion of
correct mappings for tasks ending in the later stages. For tasks
ending in the Exploring & Searching Stage, 45.6% of tasks had
correct mappings. By the Completed Stage, 72.6% of tasks
had correct mappings. This trend is consistent with correct
mappings contributing to task success.

5.2.2. Annotation and Mapping Results
Using MANCOVA and Roy’s largest root, there is a sig-

nificant effect of annotations versus no annotation on correct
mapping of the example to the program, Θ = .38, F(12,
66) = 2.10, p < .05. Separate univariate ANCOVAs revealed
that there are no significant differences between the three
annotation styles. Compared to the no annotation condition,
all participants whose examples had annotations constructed
correct example-program mappings more often. There is also
a significant effect of annotations versus no annotation on
correct mappings when looking at both the similar example
tasks, Θ = .23, F(6, 72) = 2.73, p < .05, and the dissimilar
example tasks, Θ = .25, F(6,72) = 3.01, p < .05.

This suggests that even for similar examples, annotations are
important in helping novices understand mappings. While this
is what we expected for dissimilar tasks, as the annotations can
help to fill in information missing when there is low surface
similarity, this is unexpected for the similar example tasks.
We would expect the surface similarity in the similar example
tasks to make them doable without annotations. We believe
one reason for this may be the difficulty level of some tasks.
When a novice programmer is working on a task that is beyond
their current level of understanding, surface similarity may not

be enough to assist in understanding the correlation between
an example and a problem, but an annotation can improve this.

5.2.3. Example Similarity and Mapping
A Wilcoxon Signed-Ranks test revealed that participants

were more successful at similar example mapping (Mdn = 5
of 6 correct mappings) than dissimilar example mapping (Mdn
= 3 of 6 correct mappings), p < .001, r = -.65.

5.2.4. Mapping and Task Success Connection to Analogical
Reasoning

While the upward trend of mappings for each stage and
the similar and dissimilar example results start to support a
relationship between mapping and task success, we found only
a weak correlation, rb = .21, p < .001. This low correlation
provides some support for Novick and Holyoak’s findings that
mappings are necessary but not sufficient for problem solving
[71]. However, it is worth noting that nearly 28% of fully
correct tasks did not have correct mappings, which suggests
that some participants may be solving tasks using a strategy
outside of analogical reasoning.

If Gentner’s structure-mapping theory holds for program-
ming, we should have seen a strong correlation between
mapping success and program success. Structure-mapping the-
ory states that the primary difficulty problem solving using
analogies comes through mapping the problems. If learners can
successfully map the problems, they should be able to correctly
solve the target problem. In that scenario, we would only
observe problems with executing that plan such as difficulty
finding a needed program element. Instead, we saw a weak
correlation. We explore possible reasons behind the weak
correlation using the stages of task completion:

1. Correct mappings and incorrect tasks:

• Participants may have developed their mappings too
late in the task to use them. This could happen as
a result of attempting to solve the problem without
using the example initially, either through a desire
to complete the task independently or because of
difficulties understanding the example (discussed in
Sec. 5.2.5 Correct Mappings and Incomplete So-
lution Plans). This is suggested by a large number
of irrelevant edits in the early stages.

• Participants may have generated full plans based on
the mappings between the example and target prob-
lems but struggled to execute those plans within the
programming environment (discussed in Sec. 5.2.6
Correct Mappings and Difficulties Executing So-
lution Plans). Many user interface actions in the
early stages of a task could support that users were
searching for how to execute their solution plans.

2. Incorrect mapping and correct task:

• Though we based our mapping task on those used
in psychology studies in the past, there are dif-
ferences in blocks programming environments that
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may have made the mapping task unclear (discussed
in Sec. 5.2.7 Mapping Task Design).

We now describe each of these three cases and the data
that supports these as possible reasons for the low correlation
between mapping and performance.

5.2.5. Correct Mappings and Incomplete Solution Plans

For 25.4% of tasks with correct mappings, participants’
behavior suggests that they began with an incomplete solution
plan and tested multiple variations to arrive at a solution.
Adding the missing code element for a problem marks the
boundary between forming a plan and beginning to carry out
that plan. In our stage-based model, participants implemented
their solution plans during the Assembling Stage.

If participants shaped solutions through working with the
programming environment, we would expect to see more
testing behavior through higher numbers of edits and program
executions. To explore this, we divided the tasks in the Assem-
bling Stage with correct mappings into low editing (0 or 1 edits
beyond those necessary to solve the task’s problem) and high
editing (two or more extra edits) groups. A Wilcoxon Signed-
Ranks test revealed that there is a significant difference in the
number of program executions between the high (Mdn = 2)
and low (Mdn = 1) editing groups, p < .001, r = -.38. Behavior
in the low editing group (74.6% of tasks) is consistent with
Gentner’s separation between planning a problem solution and
executing it [70]. Behavior in the high editing group suggests
that for 25.4% of tasks, participants began to execute an
incomplete solution plan, supporting Novick and Holyoak’s
findings that mappings are not always sufficient to enable
problem solving [71]. These types of difficulties spurred our
third question about the ability of programming behavior using
examples to predict success or failure.

5.2.6. Correct Mappings and Difficulties Executing Solu-
tion Plans

Difficulties executing a solution plan may explain some
task failures, but we failed to find evidence suggesting that
execution difficulties are a large source of task failures.

If a participant is able to generate a plan but struggles
to execute their plan, we would expect that task to end in
the Exploring & Searching Stage (no progress) or Ready-to-
Program Stage (interface correct) with correct mappings and a
higher rate of user interface actions due to search behavior. A
Wilcoxon Signed-Ranks test revealed that there is a marginally
significant difference between the number of user interface
actions among tasks ending in the Exploring & Searching
Stage and the Ready-to-Program Stage with correct mappings
(Mdn = 110) and without correct mappings (Mdn = 84), p =
.05, r = -.14. This suggests that there are likely some tasks
in which participants had a plan but struggled to execute it.
However, it seems unlikely that difficulties executing a solution
plan account for a large proportion of failed tasks.

5.2.7. Mapping Task Design
In 27.3% of the tasks that reached the Completed Stage

(9.1% of all tasks), participants produced incorrect mappings
but correctly completed the program. Based on reviewing a
random selection of 20% of these mappings, we observed that:

• Some participants struggled to represent mappings where
a code element present in the example was related to
something that needed to be added to their program. This
meant that one correct mapping was to map a block in the
example to an empty space in the task code. It was not
clearly specified how to do this, so this was a weakness
of the mapping task design. Since many tasks require that
participants add programming constructs, we may need to
explore alternative methods for capturing these mappings.

• In some cases, participants mapped sub-elements of a
statement rather than full code statements. For example,
a participant might map the method callers, names, and
parameters for two statements. We did not rate sub-
element mappings as correct, even when a mapping be-
tween their parent statements was correct. In these cases,
it seemed more likely that participants were drawing lines
between everything that was in the same location in the
code, rather than understanding that the methods as a
whole were the important related components. However,
it is possible that participants who created sub-element
mappings may have correctly understood the code.

5.3. Where in the process of solving a programming
problem using an example do novices struggle and
which behaviors predict success and failure?

In order to understand what challenges participants were
having, we wanted to determine what kinds of programming
behavior predict success and failure at each of the stages
(Exploring & Searching, Ready-to-Program, Assembling, and
Completed). To do this, we (1) identified predictive features
from among the programming behavior features, as shown in
Table 3, and then (2) used the subset of predictive features
to train a decision tree that predicts successful completion of
each of the stages in our stage model.

In this process, we used two classifiers: random forests and
decision trees. A random forest is “a classifier consisting of
a collection of tree-structured classifiers” where the input to
each of the classifiers is an independent identically distributed
random vector and each classifier “votes” for the most popular
[75]. In our analysis, we used R’s randomForest package,
which implements Breiman and Cutler’s algorithm for random
forests [76]. A decision tree is a classifier that partitions the
space based on the values of the internal nodes. Each leaf of
the tree has the most likely target value based on the paths
from the root that reach that leaf.

To identify predictive features for each stage, we trained a
random forest of 500 trees using a combination of performance
based features (see Table 1) and demographic features. The
demographic features included age, condition, and gender.
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Stage Predictive Features(%MSE explained)
Exploring &
Searching

Idle Time (40.26)
Num. of Runs (28.94)
Num. of Code Edits (28.73)
Num. of UI Actions (19.47)
Num. of Tinker Edits (16.18)
UI Time (15.08)
Num. of Irrelevant Code Edits (13.78)
Num. of Semi-relevant Code Edits (11.23)
Age (10.16)

Ready-to-
Program

UI Correct Time (27.95)
Num. of Runs (20.24)
Num. of UI Actions (17.21)
UI Time (14.04)
Idle Time (13.41)
Num. of Code Edits (12.80)
Example Time (10.74)
Num. of Irrelevant Edits (10.47)

Assembling Num. of UI Actions (16.63)
UI Time (13.47)
Num. of Irrelevant Edits (12.63)
Num. of Relevant Edits (10.60)
Num. of Tinker Edits (10.11)

Table 3: Predictive features for each stage

Note that all of the performance features are stage-specific. In
predicting which tasks would achieve the Ready-to-Program
Stage, we used only performance features for the previous
stage, the Exploring & Searching Stage. Then, for each of
the forests, we examined the variable importance statistics
and identified the subset of features that improved the mean-
squared error by more than 10% for use in constructing the
decision tree.

Next, we trained an individual decision tree for each stage
using our selected subset of features (see Table 3). We use
the resulting decision trees to pull out behavioral differences
between successful and unsuccessful participants at each stage.
In training both the random forests and decision trees, we
included only tasks that achieved the previous stage. Notice
that most of the features used for this analysis do not explicitly
focus on the example, but instead attempt to measure the
behaviors that indicate difficulties using the example. There
are several reasons for this: (1) we did did not use eye-tracking,
so the main ways to measure example use were mouse move-
ments and example executions, and (2) participants very rarely
executed the example code.

First, we will discuss how we assessed our decision tree
models and then we will explore the decision trees for each
of the stages and discuss the features that predict success and
failure for those stages.

5.3.1. Decision Tree Model Quality

We assessed the quality of our three decision tree models
in two ways:

First, we constructed a Baseline Model that always predicts
the most common classification (success or failure) for that
stage. Using a binomial test, we evaluate whether the decision
tree performs significantly better than this baseline (see Ta-

ble 4). We acknowledge that comparing to the Baseline Model
is a relatively weak test of significance.

To provide additional insight, we also constructed a Null
Mixed Logistic Regression model with two random factors:
task ID and participant ID. This model leverages the fact that
knowing the difficulty of the task and the general performance
of a participant is often sufficient to make good performance
predictions. As expected, the Null Mixed Logistic Regression
models perform fairly well. It is important to note that they
leverage task and participant information that we intentionally
excluded from our decision tree model. Yet, the decision tree
models achieve similar accuracy using purely behavioral data
(see Table 4).

In training both the random forests and decision trees, we
included only the subset of tasks that successfully achieved
the previous stage.

5.3.2. Predicting Ready-to-Program Stage Success
Figure 6 shows the decision tree that predicts whether a

given task will achieve the Ready-to-Program Stage (correct
interface state) given the programming behavior during the
Exploring & Searching Stage. Any amount of code editing dur-
ing the Exploring & Searching Stage is a strong predictor that
task will not achieve the Ready-to-Program Stage. Specifically,
tasks without the Exploring & Searching Stage code editing
successfully reach the Ready-to-Program Stage 91% of the
time; those with code editing successfully reach the Ready-to-
Program Stage only 20% of the time. Among the tasks without
code editing, those with task idle times of more than two
minutes are dramatically less successful, reaching the Ready-
to-Program Stage only 25% of the time. This behavior may
indicate that participants did not know what to do and were
reluctant to explore. Among the tasks with code edits during
the Exploring & Searching Stage, running the program once
or not at all increased the chances of successfully reaching
the Ready-to-Program Stage to 60%. These participants made
and tested a small number of changes before moving on to
searching for the necessary code elements in the interface.

5.3.3. Predicting Assembling Stage Success
A task successfully reaches the Assembling Stage when the

participant adds a code element needed for task completion.
Figure 7 shows the decision tree that predicts success at reach-
ing the Assembling Stage based on the programming behavior
in the Ready-to-Program Stage. The strongest predictor of
successfully achieving the Assembling Stage is the number
of user interface actions that occur in the previous stage. If a
participant makes a large number of user interface actions (i.e.
26 or more), this may suggest that they reached the Ready-to-
Program Stage (the correct interface state) by chance; 77% of
these tasks end in the Ready-to-Program Stage. Additionally,
tasks with a large number of user interface actions are less
likely to have correct mappings. For tasks with 26 or more
user interface actions, 52% have correct mappings. For those
with fewer than 26 user interface actions, 69% have correct
mappings. Finally, we note that if participants reached the

112



Stage # of Tasks Baseline Model Accu-
racy

Null Mixed Logistic Re-
gression Accuracy

Decision Tree Model
Accuracy

Ready-to-program 531 51.79% 88.89% 87.76%**
Assembling 256 80.08% 89.06% 92.97%**
Completed 205 78.05% 82.93% 84.39%*

Table 4: Decision tree model quality. **p< .0001, *p< .05

Figure 6: The decision tree predicting success at achieving the Ready-
to-Program Stage based on Exploring & Searching Stage perfor-
mance.
Yes/no: value of the inequalities.
Line thickness: percentage of tasks following each path.
Percentages in boxes: accuracy of each node.
’X’: predict failure to reach stage.
Check marks: predict success at reaching stage.

Ready-to-Program Stage late in the task, that often predicted
failure.

5.3.4. Predicting Completed Stage Success

Figure 8 shows the decision tree that predicts success at
reaching the Completed Stage, based on the programming
behavior in the Assembling Stage. Effectively, tasks break into
three categories based on the number of user interface actions.
Overall, tasks with fewer than 35 user interface actions were
most successful: 88% achieve a correct task solution. Tasks
with a mid-range (ranging from 35 to 85) number of user
interface actions were least successful, only 22% arrived at a
correct solution. Interestingly, tasks with the highest number
of user interface actions were more successful than those in
the mid-range: 54% achieved a correct solution. We note that
user interface actions are strongly correlated with code editing,
p < .001, r(205)=.64.

Once participants reach the Assembling Stage, they have all

Figure 7: The decision tree predicting success at achieving the
Assembling Stage based on the Ready-to-Program Stage performance.
Yes/no: value of the inequalities.
Line thickness: percentage of tasks following each path.
Percentages in boxes: accuracy of each node.
’X’: predict failure to reach stage.
Check marks: predict success at reaching stage.

of the code elements necessary to correctly solve the task. So,
moving from the Assembling Stage to the Completed Stage is a
matter of placing the code elements in the right positions. The
group with the lowest number of user interface actions shows
a more selective approach to making code changes. In the
middle, participants made a larger number of edits, but likely
with less deliberation about each individual change. Since even
with relatively short programs, there are a large number of
potential edits that can be made, this strategy tended towards
failure. Finally, the group that made the largest number of code
edits shows an increase in overall success rates. This may be
a result of a fast guess and test approach.

6. Discussion

We first go into further discussion on each of our primary
topics: (1) example annotations, (2) analogical reasoning, and
(3) programming behavior analysis as compared to a qualita-
tive study on example use. Then, we discuss the importance
of how this work fits into the larger picture of blocks-based
programming environments.
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Figure 8: The decision tree predicting success at achieving the
Completed Stage based on the Assembling Stage performance.
Yes/no: value of the inequalities.
Line thickness: percentage of tasks following each path.
Percentages in boxes: accuracy of each node.
’X’: predict failure to reach stage.
Check marks: predict success at reaching stage.

6.1. High Failure Rates Regardless of Annotation
While we hypothesized that the different annotation con-

ditions would provide different affordances for similar and
dissimilar example mappings and performance, we did not
find significant performance differences between the individual
annotation styles for mapping or for task performance. One
reason for this might be that each of the annotations provided
extra information to lead participants to better mappings and
solutions [17]. Yet, novices still had significant problems
completing tasks in all conditions. Looking at the results,
the two main issues causing low overall success were (1)
inability to move beyond the Exploring & Searching Stage,
and (2) incomplete solution plans with correct mappings. In
order to help novice programmers in using examples, future
work should address these two problems.

Our study results suggest that supporting novices in taking
the first steps in using an example is crucial, similar to a
finding that getting started is generally difficult for end-user
programmers working on specified tasks [77]. In 51% of tasks,
participants made no discernible progress towards a solution.
Of those who made any progress, 62% arrived at the correct
solution. One reason for this is that novice programmers may
be overwhelmed at first, trying to figure out what to focus on
and how to start. Only 45% of participants at this stage made
correct mappings, so it may be critical to nudge novices back
toward looking at and using an example if they have made a
certain number of edits with no progress. Another issue might
be that a programmer does not understand the example if their
mapping is wrong, which could indicate the need for multiple
examples of varying surface similarity, allowing novices to
search for another example if the first one is confusing.

We showed that one reason behind failure is that once

novice programmers reach the Assembling Stage, they often
do not have a complete or correct plan for how to reach
the solution. This means that although they understand the
relationships between the task and the example, they do not
know how to formulate a plan. The first step in helping
novices in this situation is to be able to identify that they are
having this specific issue. Based on our results, we believe
systems should automatically keep track of whether a novice
has added the correct component, whether they have reached
a correct solution, and whether they have made multiple edits.
Essentially, a system could leverage the stage model discussed
in our results to keep track of progress and provide strategic
advice. Future work could use this model as a starting point for
educational strategies in programming, similar to the problem
solving strategies introduced by Loksa et al. [78].

6.2. Programming Examples and Analogical Reason-
ing

In nearly 75% of tasks, participants’ behavior is consistent
with the prediction that mapping success is sufficient to enable
task success. However, in the remaining 25% of tasks, partic-
ipants made a series of code edits and program executions
that suggests they did not have a full solution in mind when
they began to make changes to the target program. If we
can think of example code use as analogical problem solving,
this opens up this topic to being able to apply other findings
from analogical problem solving research to support for novice
programming with examples. Two applications of analogical
reasoning that could apply to novice programming are (1)
using visual analogies as hints and (2) work on analogical
reasoning across ages.

Research has found that visual analogies can be used as
cues to hint at an analogy that had been presented earlier
[79]. This could apply to novice programming because once
a novice programmer has learned a concept once, they may
still not realize that they should use it in another situation. In
this case, a visual analogy might be useful because it would
cue memory of previously provided information, without being
repetitive. One study on programmers found that they naturally
use examples as reminders [9], so this might be useful for
novices as they are learning as well.

Work on analogical problem solving and the development
of reasoning in children may also apply to example use in
novice programming, since blocks-based environments exist
for all ages. One study found that middle school students were
stronger at solving analogy problems, but pre-schoolers were
also capable of using an analogy to solve a new problem [80].
Further, middle school students often had similar performance
as adults. This implies that we may be able to use similar sup-
port for middle school children and adults. Examples are also
likely to be applicable for very young novice programmers,
but the analogies must be very carefully selected [80].
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6.3. Programming Behavior and Relation to Quali-
tative Study on Example Use

This study inspired a qualitative study on the barriers of
novice programmer example use that looked at what novice
programmers talked about during similar tasks to this study
[53]. In the qualitative study, participants worked in pairs
and only saw examples with the Visual Emphasis annotation.
Findings included hurdles to success like being distracted by
other exciting aspects of the programming environment, not
understanding the example, not knowing where to find com-
ponents in the interface, and trouble implementing solutions
due to misunderstandings about the code.

Three hurdles from the qualitative study seem to align well
with predictions in the decision trees: the context distraction
hurdle, the example comprehension hurdle, and the program-
ming environment hurdle.

• In the context distraction hurdle, participants talked about
exploring the programming interface and trying out ideas
they had to solve the task based on what they saw in
the programming environment (rather than the example).
This aligns with the decision tree in which having edits
in the Exploring & Searching Stage often leads to failure,
shown in Figure 6.

• The example comprehension hurdle captured participants
talking about not understanding how an example worked
or how it was relevant to a task. Spending long amounts
of time with the example (as in the Assembling Stage
decision tree in Figure 7) may indicate that a participant
was trying to understand an example but struggling.

• In the programming environment hurdle, participants dis-
cussed having trouble finding a block they needed to
solve a task, or having trouble editing their code in some
manner. This aligns with the fact that a large number of
UI actions in the Ready-to-program Stage likely means
that a participant will not reach the Assembling Stage, as
shown in the first prediction branch in Figure 7.

Novice programmers’ descriptions of their difficulties on
similar tasks aligning with the behavioral predictions in this
analysis supports the value of using decision trees and behav-
ioral data to explore example use and predict success.

6.4. Examples and Blocks-Based Programming
While examples are readily available for programmers in

text languages, there are many fewer resources for program-
mers in blocks-based programming environments to find ex-
amples. Part of this may be due to the fact that it is not as
easy to quickly copy and paste code to a forum like it is for
text languages. However, the popularity of using example code
in programming implies that it is important for the research
community to address example use in blocks-based program-
ming languages. This research topic is further compounded by
the fact that most blocks-based programming language users
are novices, so using examples is not as straightforward as it

would be for experts. This study contributes a better under-
standing of novice blocks programmers using examples with
varying annotations and similarities. This study also begins
to explore two ways to predict success or failure of novice
programmers using examples in blocks-based programming
environments.

For the analogical mapping task, participants drew lines
between components that were related in the example and the
task. While there were several challenges in the implemen-
tation of this task, the challenges for a text-based language
would be different. Instead of having discrete components,
or blocks, that can be connected with lines, the participants
would have to somehow decide which part of the code they
wanted to connect and mark that in an understandable way.
For novices, this might be more challenging because blocks
of code are not necessarily as obvious in a text language.
Furthermore, it would be much more difficult to group correct
and incorrect mappings because participants would be able to
draw lines between many more combinations of characters,
whereas in a blocks-based programming environment, there
are more constraints.

Our task stages and decision tree predictive modeling were
also highly blocks-specific. For example, some of the stages
were based on having the UI in the correct configuration to
access the blocks needed to succeed in the task. This works
across almost all blocks-based programming environments,
where blocks are organized in palettes that programmers must
correctly select to find the component that they need. In a
text language, the intermediate steps would be different and
likely more difficult to observe. Furthermore, code edits are
easier to define in a blocks-based programming environment
because it is easy to track when a code block has been added
to a program, modified in a discrete way, or removed. In a text
programming language, it would be more challenging to define
when a code change has started and ended. While heuristics
could be created for this purpose, the strategy used in this
paper suits a blocks-based programming language more easily
and effectively.

6.5. Limitations
In this study, we focused exclusively on the behavior of

young novices as they attempt to use examples. Although
young novice programmers may share some challenges with
older novices, there are likely unique features about their
approach to using examples. While we suspect that analogical
reasoning has similar behavior in older children and adults,
we do not know which aspects of the programming behavior
we observed would apply to adult novices.

Additionally, participants were unfamiliar with both the
target program and the example. Some prior work suggests
that adult novices often attempt to integrate several snippets of
found code to solve a problem [13]. This results in a situation
similar to that of our study: novice programmers have code
to modify that they do not fully understand and an example
they want to apply to it. We think this is an important type
of example use, but we acknowledge that it does not capture
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all example use. The combination of a familiar, understood
target program and an unfamiliar example is important and
not addressed through this study.

7. Conclusions and Future Work
Overall, our results support other findings that completing

programming tasks using examples is challenging for novice
programmers. While similar examples and annotations help
novice programmers perform better, it is clear that these are
not enough support for novice programmers using examples.
However, it is interesting that the three annotation conditions
were not significantly different, indicating that the simple
visual emphasis may be enough help even for novices to draw
attention to the part of the example related to their task. This
could be highly valuable if a system needed to automatically
annotate examples, as visual emphasis is the only of the three
where automation would be a viable option.

In terms of predicting success, analogical mapping seems
like a promising method, but needs some improvement. Al-
though we did not want to interrupt task flow to assess ana-
logical mappings, future educational systems may benefit from
integrating analogical mapping tasks into learning materials,
which would allow them to measure analogical mappings dur-
ing tasks. Furthermore, if future work could reduce the number
of errors in mapping due to the way the mapping task was
operationalized, there might be a higher correlation between
mappings and success. Specifically, adding more constraints
about which components can be mapped and how to map
blocks in an example to missing blocks in a task are two
important future directions for this evaluation method. We
believe better constraints and a stricter time limit could vastly
improve the consistency and accuracy of this method.

The stage-based analysis and decision tree models pro-
vide information about which programming behaviors impact
success at each stage of the problem solving process. We
found that in most tasks that do not succeed, participants
did not progress past the Exploring & Searching Stage. This
has important implications for the beginning of a task, when
participants seem to need the most help. The large number of
UI actions leading to failure in later stages gives some support
to the idea of adding programming environment assistance to
examples if programmers do not have the option to directly
insert the example code into their program. These stages are
highly applicable to other blocks-based programming environ-
ments where programmers normally must follow the same
process to find the components they need in the interface,
add them to their program, and then modify the program to
complete the task. One promising future direction for this
analysis of programming behaviors is in designing educational
systems, such as intelligent tutoring systems, where a system
could assess programmer behavior in real-time and use that to
provide feedback to the learner.
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Abstract Block-based programming languages are a popular means 
to introduce novices, specifically children, to programming and 
computational thinking concepts.  They are tools to broaden par-
ticipation in computing.  At the same time, block-based languages 
and environments are an obstacle in broadening participation for 
many users with disabilities.  In particular, block-based program-
ming environments are not accessible to users who are visually 
impaired.  This lack of access impacts students who are participating 
in computing outreach, in the classroom, or in informal settings that 
foster interest in computing.  This paper will discuss accessibility 
design issues in block-based programming environments, with a 
focus on the programming workflow.  Using Google’s Blockly as a 
model, an accessible programming workflow is presented that works 
alongside the conventional mouse-driven workflow typical of block-
based programming.  The project presented is still in progress. 

Keywords accessibility; block-based languages; visually impaired 

1 . Introduction 
Block-based systems have gained prominence in recent years 

as a means of introducing novices to programming. The 
Blockly framework was developed by Neil Fraser's team at 
Google [1].  Blockly (sometimes with modifications) is often 
used as a framework for other block-based languages and 
activities (such as App Inventor, Gameblox, Code.org Hour of 
Code activities, as well as a newly announced version of 
Scratch [2]).   

In some cases, such as MIT’s Scratch, online communities 
exist and the tools are integrated into pre-college computer 
science curricula (e.g. Exploring Computer Science, 
CSPrinciples) [3].  As these systems have become components 
of curricula, after-school camps, and outreach, the lack of 
accessibility for many students with disabilities creates an 
obstacle for participation in these activities that are devised to 
increase participation in computing.  In particular, users with 
visual impairments are generally not able to use block-based 
tools unless they have enough vision to view the screen 
comfortably.  So one motivation for our work is to make 
popular block programming environments and activities more 
accessible to the visually impaired.  

The other motivation is that, as with novice programmers 
who are sighted, the learning curve of dealing with the syntax 
of text-based code persists with novice programmers who are 
visually impaired.  For example, many pre-college students are 

not familiar with curly braces and their location on the 
keyboard.  The benefit of focusing on programming concepts 
over syntax is relevant to for the visually impaired as well as 
for sighted novice programmers. By extension, the ability to 
create and modify programs may be easier with the structural 
features of blocks compared to text, if the tools are designed 
appropriately. 

Visually impaired individuals may have some sight or have 
little to no vision.  Assistive technology needs vary according 
to the degree of sight a person possesses.  People who can read 
magnified text may use screen magnification software to view 
the contents of the screen by a specified magnification factor, 
adjust foreground and background colors, or increase the size 
of the cursor.  These users typically use the mouse alongside 
the keyboard.  Individuals who are blind do not use the mouse.  
Instead, navigation relies on the keyboard (often through 
keyboard shortcuts).  Screen readers (and for some, refreshable 
Braille displays) are the means to access information that is 
displayed on the screen.  When a website or program is 
designed correctly, the screen reader will read the content, 
including menus and other navigational elements.  In the case 
of typical block-based programming environments, the screen 
reader reads no content or navigation elements. 

Google has recently undertaken work on an accessible 
version of Blockly [4].  Their approach focuses on screen 
reader compatibility, which is the foundation for access for 
blind users.  Google’s Accessible Blockly demo re-imagines 
the UI, so that text is used over blocks, as shown in Figure 1.   

Our approach to redesigning Blockly’s user interface focuses 
on preserving the current drag-and-drop user interface for 
creating block-based programs, while adding additional 
features to increase access to visually impaired users (or others 
who cannot use a mouse).  Our approach includes the addition 
of a keyboard interface, screen reader compatibility, 
appearance customization, and related features to increase 
access to Blockly-based systems.  Once complete, the authors 
envision that our additions could be applied to any tool that 
uses the block-based Blockly framework. 

This paper also presents accessibility issues with the design 
of block-based languages. Users with visual impairments, 
including blindness, are the focus of this paper. Our redesign of 
the  Blockly  framework,  specifically features  to  facilitate  the 
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Figure 1.  Screenshot of Accessible Blockly demo depicting the 
repeat block as text. 

programming workflow and access to the block-based 
programs created in Blockly, are discussed.  Our work is 
ongoing and has not had formal evaluation with users.  
However, the work seeks to make block-based programming 
accessible to the blind and other users with visual impairments, 
and can help other developers.  Furthermore, the goal is to add 
the functionality on top of the Blockly framework via files that 
can be added to any Blockly-based project, thus making 
accessibility a seamless option for developers. 

2 . Research Questions 
Using the Blockly platform, we are re-engineering the 

system to enable use by users who are visually impaired.  As 
such, our preliminary research questions are: 

• How can Blockly be made accessible to the visually 
impaired, while at the same time remain usable to 
sighted users? 

• What features will both visually impaired and sighted 
users appreciate? 

3 .  Block-Based Programming Environment 
Features that affect Accessibility 

Each block-based project team makes design decisions for 
their project that in some cases have unforseen consequences.  
Like any software project, our team prioritizes features based 
on a variety of needs that are considered.  Examples of these 
design decisions are described in the following subsections. 

3.1. Technology and Platform Choices 
The technologies used to develop block-based systems can 

have a large impact on accessibility of said systems to the 
disabled.  The impact can be significantly positive or negative.  

Scratch 2.0 uses Actionscript/Flash.  A positive implication 
is that Scratch runs in the browser, making installation 
seamless and thus easy to access for many people using various 
operating systems.  At the same time, the technology selection 
makes accessiblity impossible.  In 2010, Adobe announced 
accessibility suport for Flash/Flex in terms of the Accessible 

Rich Internet Applications (ARIA) specification [5].  While 
ARIA is supported in terms of roles and states for HTML, 
Flash objects and Actionscript do not support ARIA roles and 
states, so presenting and interacting with a system is not 
possible (additional details are provided in Section 4.1).  
Another issue for screen reader users, who rely on keyboard 
shortcuts, is that Flash can override those keyboard shortcuts. 

The Lego Mindstorm block-based robotics-programming 
environment is traditionally a desktop application that uses 
LabView as the underlying technology.  While the software 
runs on the Windows and Mac operating systems, the software 
is not compatible with screen readers.  As a result, users who 
are blind will not hear anything. 

On the positive side, Blockly is developed in CSS, SVG,  
and JavaScript.  As such, Blockly also runs on the web 
browser.  However, Blockly does not have the same 
accesibility issues, because it can leverage ARIA specification 
from the W3C's Web Accessibility Initiative.  Developers need 
to adhere to the ARIA specification since compatibility does 
not happen automatically for any web application.  By 
following ARIA, a screen reader can read the structure of the 
web page, the labels on buttons and menus, as well as the 
graphical objects (e.g. blocks).  Widgets, such as sliders and 
tree items, can be described. Support also includes keyboard 
navigation, as well as clearly articulated properties for drag-
and-drop, widget states, or areas of a page that can be updated 
over time or based on an event. [6] 

3.2. Mouse-centric Input 
Many block-based systems rely on mouse input as the 

primary means of accessing features, including selecting blocks 
and adding them to programs, selecting attributes, and running 
the created program.  One cannot use the keyboard to locate, 
select, and place a block onto the workspace in Scratch or 
Blockly as they were originally designed to rely on the mouse 
for such interaction.   

Many users with visual impairments rely on the keyboard as 
the primary input device.  As such, keyboard-focused 
commands and shortcuts are key to making interaction 
possible.  Systems must be designed in order to utilize the 
keyboard as input in terms of menu navigation, programming, 
and accessing various panes in the programmng environment 
(e.g. changing focus to access specific information).  In 
addition, the keys used to access features and information 
needs to be consistent with said standards and not conflict with 
keyboard shortcuts used by screen readers. In order to provide 
appropriate access to both sighted and visually impaired 
students, designing the system to allow for interaction via the 
mouse or keyboard is needed.  This aspect is the foundation for 
much of the work in our project. 

Wagner and Gray [7] discuss the use of a Vocal User 
Interface for Scratch.  While a voice-based user interface can 
be used by users who are blind, their work focused on users 
with physical disabilities where using the mouse is not feasible 
or comfortable for long periods of time.  The use of voice is 
another option for some users, though the audio presentation of 
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the system and blocks are the focus for this paper.  
Nonetheless, their work shows that there is not a simple one 
size fits all for accessibility. 

3.3. Feedback 
User feedback in block-based programming environments 

are often visual in nature (e.g. a visual change on the 
workspace, pop-up messages, dialog boxes) without an audio 
feedback mechanism.  Examples include a successful 
compilation or incompatible blocks that the user tries to 
connect together.  Providing associated audio-based feedback 
can take various approaches depending on the nature of the 
feedback.   

Students who use screen readers need to have all content, 
including errors and any status messages, provided audibly. 
The audio capabilities of many block-based systems are 
limited, whether it be the ability for a robot to play a tone or 
recorded sound or for a Microsoft Kodu game to play a sound 
effect when an event occurs.  The audio capabilities, including 
the ability for a form of audio description when an animation is 
played or dialog are displayed, is needed.  Tapping into the 
location attributes or dialog text to enable compatibility with a 
screen reader is possible in many technologies (e.g., JavaScript, 
Java, C++, C#). 

Audio-based feedback can be in the form of speech or sound.  
As a pane or dialog box gets focus, the error or status text can 
be read (assuming it is programmed to enable a screen reader to 
access the text).  Other feedback may be in the form of sounds 
(e.g. an audio icon or earcon) that correspond to a specified 
meaning.  An example of an audio icon is the sound of 
crumpling paper when a file is moved to the trashcan [8].  An 
example of an earcon is a tone or chord that is abstract in terms 
of the sound itself, but it is given meaning according to the 
association, such as a deep sound may correspond to an 
unsuccessful download of the program to a robot [8].  We are 
leveraging related work that has been conducted earlier to 
assess the use of audio cues in programming for programmers, 
though the study was conducted in a traditional, text-based 
programming environment [9].  Our work uses a working 
prototype of Blockly as the environment, enabling the 
developers to get early user feedback that helped direct the 
work described here. 

 

3.4. Block-based Programs Created by the User 
Each block-based program is designed for a particular 

programming environment.  Scratch programs can be in the 
form of animations or games.   Lego Mindstorms NXT-G 
programs allow a robot to move and interact with its 
environment.  Programming environments based on the 
Blockly framework enable users to create programs in a variety 
of languages.  Some Blockly-based tools produce JavaScript or 
Dart, where other tools are used to program robots.   

4 . Redesigning Blockly for Accessibility 
Our work in modifying Blockly to provide access to users 

who are visually impaired is ongoing.  The following sections 
provide an overview of system modifications.  Our team uses 
only the technologies that Blockly uses, with one exception: the 
addition of a single JavaScript library to provide specific audio 
feedback. 

The overarching work focuses on program creation and 
program navigation.  The key goals of program preparation are: 

• Allowing the user to change the highlight color for the 
current block or the connection point of a block in the 
workspace to improve discernability. This is in contrast 
to the findings in Fraser [10], where a borderless look 
prevails. 

• Allowing the user to change the color of the workspace 
in order to minimize visual discomfort and improve 
readability. 

• Enabling the blocks to be read on the workspace and in 
the toolbox (the menu where blocks are chosen). 

• Visually linking blocks with any associated comments, 
where the user can jump from the block to the 
comment and back as desired. 

• Providing a unique identifier with each block to enable 
visual and audio-based understanding of blocks.   

While program creation is critical, one tends to program 
incrementally in terms of adding features or fixing defects.  As 
such, the need to enable visually impaired users to be able to 
navigate their code is critical.  Our team designed the following 
features to facilitate the navigation of code: 

• Each block as well as each block part (e.g. mutator or 
inner block) can be read as a single block or in the 
program as a whole, depending on user need, as 
described in Section 4.1.   

• The keyboard can be used to navigate between blocks 
and within a block (e.g. mutators), as described in 
Section 4.2.  

• Each block (including vertical blocks) is given a 
unique identifier to provide a visual and auditory 
structure for the program.  The identifier is presented in 
the tree view, as described Section 4.2.  

• Audio cues are used in order to reinforce the level of 
nesting.  A comparative study is underway. 

The following subsections outline our efforts to increase 
access to Blockly in these areas. 

4.1. Block Content Presentation by the Screen Reader 
Blockly had no screen reader support initially.  Our team 

added screen reader support.  The text read by the screen reader 
is generated by our modified Blockly function that converts a 
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given block into a string. The original Blockly function returns 
a string containing both the given block and all child blocks 
combined. This meant entire blocks of code were read in one 
shot, providing too much information to the user. The function 
was altered to return only the selected block and any child 
blocks that would translate into a single line of code, for 
instance, the multiple blocks needed to create an if statement.  
Figure 2 shows a sample program that contains an if 
statement.   

 
Figure 2. A sample program created in Blockly. 

In the sample program in Figure 2, there is an if block inside 
of a repeat block.  The screen reader reads the if statement as 
if item greater than or equal to 4.  

The original Blockly function also replaced empty 
connections with question marks (e.g., create a list with items 
?, ?, ?). As symbols, question marks do not translate well 
verbally nor do they indicate the location of the connection in 
relation to other connections. To resolve this, we replaced the 
question marks with the letters ‘A’ through ‘Z’ in order. This 
allows for 26 empty connections per block and the default 
blocks require 4 at most.  

Referring back to the if block from Figure 2, the removal of 
item and 4 would result in the screen reader portraying the if 
block as if block A is greater than or equal to B.  This is an 
improvement to the screen reader saying if ? is greater than or 
equal to ?, as stating question mark multiple times in quick 
succession may be jarring to the listener.  Further testing will 
assess how best to provide information without overloading 
short-term memory. 

Our team added screen reader support by dynamically 
adding Web Accessibility Initiative – Accessible Rich Internet 
Application (WAI-ARIA) attributes to the page. WAI-ARIA is 
the World Wide Web Consortium (W3C) standard for 
increased accessibility [6].  

Three particular WAI-ARIA attributes are used to make 
Blockly accessible: aria-live, aria-label and role.  These 
attributes are applied to a hidden div on the page that is updated 
with the necessary string to be read aloud.  In order to have 
cross-browser support, the attributes are added both statically 
when the program loads (Chrome, Firefox, Edge/Internet 
Explorer) and dynamically each time the div is updated 
(Safari).  The dynamic update each time the div is updated in 

Safari is a workaround at the time, but as web browsers evolve 
the approaches may become more streamlined. 

The aria-live region attribute is placed on an element to 
inform the screen reader when the content of that element is 
updated. This region has 2 potential values: polite and 
assertive. A live region with a value of polite will only read the 
updated content after the current screen reader buffer is 
emptied. This ensures that the user does not lose their place 
mid-page. A live region with a value of assertive will interrupt 
the current screen reader buffer to immediately read the 
updated information. For Blockly, the assertive value is used so 
that the screen reader can immediately respond to user input 
when a block is selected or placed on the workspace. 

While the aria-live region technique reads the content of the 
div on most browsers, Safari requires the div to also have an 
aria-label attribute. An aria-label defines what is read when an 
element is selected.  Examples include reading the content of a 
block that is selected when browsing in the block menu or 
reading the name of each block category in the block menu 
(e.g. Logic, Math). Usually a div element would not need an 
aria-label. However, Safari only responds when the aria-label 
changes in the live region, not when the inner text of the div 
changes.  

4.2. Keyboard Support for Block Menu and Block 
Navigation 

Blockly is designed to use a mouse as the primary form of 
input. The only parts of the interface that are keyboard 
accessible are the non-Blockly-specific ones that were created 
using Google Closure (i.e., the outer toolbox menu). Users who 
are blind use only the keyboard to navigate the web, meaning 
all mouse events in Blockly need to be replaced by our team. 
This includes selecting, adding, connecting, and editing blocks 
as well as interacting with the mutator and context menus.  

Screen readers usually have their own hotkeys for web 
navigation. The hotkeys are also not necessarily consistent 
across screen readers. This is a problem for applications that 
require the use of keyboard shortcuts. To mitigate conflicts, we 
selected a set of keys to facilitate navigation.  Selecting and 
navigating between blocks in Blockly, for instance, are mapped 
to the W (up), A (left/back), S (right/next) and D (down) keys 
because the arrow keys are already used navigate through the 
HTML content of the page. These keys were chosen because 
they are commonly used for directional navigation in games. 
The WASD keyboard convention also allows the user to use 
their left hand for navigation and their right hand for selecting 
items with the enter key.  

In addition to navigating among blocks and menus, it is also 
necessary to add comments to blocks and go back and forth 
between comments and blocks.  As part of our redesign of the 
user interface, the user has a box on the side of their screen to 
view comments in a tree view (Microsoft Excel does this as 
well).  The screen reader reads the comments as desired. The 
tree view is updated automatically, and the structure will match 
that of the program using the hierarchy of identifiers associated 
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with each block. In addition, a line will connect the current 
block with the comment line in the tree view. 

The hierarchy was created using an n-ary search tree that 
cycles through a block and all of its children. Each block is 
given an alphanumeric label to help give the user a sense of 
location while navigating. The outermost blocks are lettered 
(A), while each inner block is given a number (A1), and each 
additional nested level is given a decimal (A1.1).  In Figure 2, 
the outer set block is A, the repeat block is B, and the two 
blocks nested with the repeat block are the inner set block 
(B1) and the if block (B2).  By extension, the add block that is 
connected of the repeat block is noted as B1.1. 

4.3.  Connecting and Editing Blocks on the 
Workspace 

In order to use the keyboard to add blocks to the workspace, 
an edit mode was provided. This mode is needed to avoid 
conflicts with other Blockly features.  If a user presses the E 
key when a block is selected, the WASD navigation keys 
transition from selecting different blocks to selecting any of the 
connections or fields on an individual block. Each time the user 
switches connections, the screen reader announces the new 
connection. Pressing the Enter key on one of these connections 
or fields allows the user to attach another block (setting an 
insertion point) or edit the field. If a block is added to the 
workspace unconnected, it will automatically be attached to the 
last outermost block. If a block cannot be attached to another 
block, then it will be unconnected and need to be moved or 
otherwise managed (e.g. deleted if undesired).  As noted 
previously, users insert and move blocks by setting an insertion 
point if the desired location is different from the current 
location.  The authors are currently assessing how to best 
accomplish this critical feature, including how to clearly 
articulate the location of the insertion point. 

In Blockly, some blocks have mutator menus that allow the 
user to drag additional inputs or statements onto a block. For 
example, an if block can turn into an else	if block. The 
mutator menu is a pop-up dialogue where users can drag and 
drop blocks onto the existing block to alter it.  This mouse-
based menu was revised in two ways by our team. Some 
mutators were turned into individual blocks such as the else	
if and else blocks. Other mutators, namely the ones that 
changed the number of outputs on a block, were given a drop-
down menu that would dynamically add and remove outputs as 
necessary. 

4.4. Additional Features to Enhance Access 
Additional changes were made to enhance the overall 

experience for visually impaired users, which may also appeal 
to sighted users. These changes include adding the ability to  
change the text size and color of the workspace, an accessible 
custom help guide, and a comment display window.  

Themes 
Three themes were added to the workspace: high contrast, 

off-white, and matte blue. These colors were added after a 

participant in an early study commented on the eyestrain 
caused by the original bright white workspace. All of the colors 
were tested with a color blindness simulator and a member of 
the team who is color blind to ensure that the blocks were 
distinguishable from each other and the background.  
Accessible Help 

An accessible custom help site was created with references 
for each block. When a block is selected, a hotkey can be used 
to open that particular block’s help information on the site. The 
default help pages for the Blockly library led to a page that is 
not fully accessible and provided limited information. The new 
site was specifically designed by our team to navigate with a 
screen reader and has detailed information on each block.  

5 . Next Steps 
The initial version of accessible Blockly should be 

completed during Winter 2017.  The results of a prior audio 
feedback study provided early feedback on the user interface, 
as well as assessed the impact of various types of audio 
feedback modalities for code navigation and the understanding 
of nesting. The feedback will be used in implementing code-
based audio feedback during code navigation, in conjunction 
with the option for screen reader use, if needed.  The 
accessibility features will also be studied in order to compare 
the usability impact for users with and without sight in order to 
ascertain what value may be found for sighted users as well as 
those who are visually impaired.  Concerns include the 
verbosity of the information being presented, as well as the 
issues that young users may have as they are often users of 
Block-based systems.  The formal studies will allow the team 
to refine the system and provide greater access for users, while 
providing a model for developers of other Blockly-based 
systems or block-based systems in general. 

In addition to block-based languages, hybrid text and block-
based languages such as Pencil Code [11] also have the 
potential for increased accessibility.  Our team is also looking 
at applying our strategies to Pencil Code, but the teams behind 
Pencil Code, Code.org’s App Lab, and other block languages 
can integrate accessibility into their system’s designs by 
following the ideas we have discussed here. Some changes are 
at the user interface level while other accommodations are 
deeper in terms of new or redesigned features.  An example of 
this is the Stride frame-based editor used in tools such as 
Greenfoot [12].  This editor enables users to work with 
operations and constructs at an abstract level. This innovation, 
and others like it, may help increase access to computer science 
for students with disabilities, as well as students overall. 
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