
C. Zhao et al. / Journal of Visual Language and Computing (2020) 31-41

DOI reference number: 10.18293/JVLC2020N2-010

ViBERT: Visual Behavior Regression Testing

Chunying Zhaoa,*, Cong Chenb, Kang Zhangc and Jun Kongd

aSchool of Computer Sciences, Western Illinois University, USA
bIndependent Scholar
cDepartment of Computer Science, The University of Texas at Dallas, USA
dDepartment of Computer Science, North Dakota State University, USA
__

A R T I C L E I N F O

Article History:
Submitted 12.1.2020
Revised 12.7.2020
Second Revision 12.9.2020
Accepted 12.18.2020

Keywords:
Software Visualization
Program Comprehension
Behavior Regression Testing

A B S T R A C T

Regression testing is a type of software testing that aims at identifying faults caused by code changes.
Regression testing is important especially during software evolution and maintenance. As developers
integrate programs or make updates to a software system, they need to make sure the changes do not
adversely affect other parts of the system. Using dynamic analysis, behavioral regression testing
(BERT) is one of the techniques proposed to solve the problem by re-executing test cases that target
the affected area. It compares the behavior of a program before and after the changes upon certain test
cases. This paper proposes Visual BEhavioral Regression Testing (ViBERT), a visualization approach
to comparing the behavioral differences between the new and old versions of a program in regression
testing. We build a prototype called SoftLink, a visual environment that shows correlation/difference
between two versions of a program behavior. SoftLink displays call graphs of two executions on angled
parallel planes in a 3D space, and constructs correlations between them. It provides developers with
an intuitive interpretation of the testing results. A case study is presented.

 © 2020 KSI Research

1. Introduction

Software visualization is defined as “the use of the
crafts of typography, graphic design, animation and
cinematography with modern human computer
interaction and computer graphics technology to
facilitate both the human understanding and effective
use of computer software” [38]. Visual clues such as
color, shape, and metaphors ease the cognitive load of
understanding software systems [7][40]. Numerous
research has been proposed and various tools have been
built to visualize different aspects of software systems,
such as static program structures [11][17][21], dynamic
program executions [8][14][16][29], software
evolution[6][9], and debugging results [12].

Regression testing is an important type of software
testing. During a software development and

maintenance process, software may go through many
changes due to system integration or software updates.
Each change may introduce unwanted faults to
software. Regression testing re-executes existing test
cases after the source code is changed in order to
determine whether the modified version has introduced
regression faults into the previous working version [26].
Regression testing techniques heavily rely on the
quality and sufficiency of test cases. Testers have to
compromise between making thorough testing and
lowering the cost. Numerous testing selection and
prioritization approaches have been proposed
[10][25][26][31][32][33].

Behavioral regression testing (BERT) [28][37]
addresses this dilemma by identifying behavioral
differences between two versions of a program through
dynamic analysis. Since two consecutive revisions of a
program usually do not differ significantly, BERT can
reduce the number of test cases needed while achieving
promising results. Behavioral regression testing relies
on comparing the behavioral differences between two
versions of a program through dynamic analysis to
identify unforeseen side effects.

Journal of Visual Language and Computing

*Corresponding author
Email address: c-zhao@wiu.edu (Chunying Zhao)
congchenutd@gmail.com (Cong Chen)
kzhang@utdallas.edu (Kang Zhang)
jun.kong@ndsu.edu (Jun Kong)

journal homepage: www.ksiresearch.org/jvlc/

C.Zhao et al. / Journal of Visual Language and Computing (2020) 31-41

Inspecting the differences between versions of
program executions is tedious and error prone. To
strengthen the effectiveness of BERT, this paper
proposes Visual BEhavioral Regression Testing
(ViBERT), a visual approach for comparing program
behaviors in regression testing. We have built a semi-
automatic tool called Softlink. It is a visual environment
that displays and compares two or more program
executions in a 3D space. It provides multiple
viewpoints and directly shows the correlations between
execution traces. The novelty of our approach is that it
not only visually shows the differences and
commonalities of two consecutive executions, but also
provides a mental image of the location of the
behavioral differences within the context of method
calls. Our work enhances BERT with a visual
representation. To our best knowledge, no studies have
been conducted on comparing execution traces using
3D visualization in regression testing.

The rest of the paper is organized as follows. Section
2 illustrates a motivating example. Section 3 presents
the overview of the approach. Section 4 describes how
the execution traces are collected and abstracted.
Section 5 shows the construction of SoftLink. Section 6
explains a case study and analyzes the results. Related
work is reviewed in Section 7. Section 8 concludes the
paper and presents our future work.

2. A Motivating Example

In this section, we present a motivating example to
show how visualization can enhance BERT. The class
Money is a Java package of JUnit4 library illustrating
how to write unit tests with Junit [5]. As shown in
Figure 1, Money.equals() is a method of Money that
determines whether two monies are equal or not.

public boolean equals(Object anObject) {
 if (isZero())
 if (anObject instanceof IMoney)
 return ((IMoney)anObject).isZero();
 if (anObject instanceof Money) {
 Money aMoney = (Money)anObject;
 return aMoney.currency().equals(currency())
&& amount() == aMoney.amount();
 }
 return false;
}

Figure 1: Original version of Money.equals().

Figure 2 shows the JUnit test cases for testing the
method Money.equals().

public void testMoneyEquals() {

01 assertTrue (!f12CHF.equals(null));
 Money equalMoney = new Money(12, "CHF");
02 assertEquals (f12CHF, f12CHF);
03 assertEquals (f12CHF, equalMoney);
04 assertEquals (f12CHF.hashCode(),
 equalMoney.hashCode());
05 assertTrue (!f12CHF.equals(f14CHF));
}

Figure 2: Test cases in Money for Money.equals().

We deliberately remove the statement
aMoney.currency().equals(currency()) && as shown in
Figure 3, simulating a situation that a developer changes
the code but introduces an error: the program omits
checking currency when it compares two monies.

public boolean equals(Object anObject) {
 if (isZero())
 if (anObject instanceof IMoney)
 return ((IMoney)anObject).isZero();
 if (anObject instanceof Money) {
 Money aMoney = (Money)anObject;
 return aMoney.currency().equals(currency())
&& amount() == aMoney.amount();
 }
 return false;
}

Figure 3: Modified version of Money.equals().

After running the test on the modified version, JUnit
failed to catch the bug. The original Junit test cases are
not sufficient to catch the error because the monies in
the test cases have the same type of currency, such as
f12CHF and f14CHF.

By visually comparing the runtime behaviors of two
versions of the program, however, developers can easily
identify the behavioral variations. Figure 4 correlates
the behavior of two versions of the program on two 2D
planes. There are observable differences in the visual
presentation. The red circles drawn by hands on the left
plane indicate the method invocations (currency())
executed in the original code but not executed in the
modified version. With this visual hint, developers can
easily locate the code affected by the modification and
further check whether these behavioral variations are
caused by errors or intended modifications. To further
illustrate our approach, a case study has been conducted
on an open-source program in Section 6. The initial
results provide shows that our approach reveals the
behavioral variations of the systems under study with a
visual presentation.

C.Zhao et al. / Journal of Visual Language and Computing (2020) 31-41

Figure 4: Visual representation of the Money executions. The left plane presents the original version, and the right one
denotes the modified version. The purple correlations lines show the mapping between these two executions.

3. Visual Behavioral Regression Testing
(ViBERT)

3.1 Approach Overview

Behavioral regression testing (BERT) has been used
as an effective technique to identify behavioral
differences between two versions of a program through
dynamic analysis. Since two consecutive revisions of a
program usually do not differ significantly, BERT can
greatly reduce the number of test cases needed while
achieving promising results. BERT typically works as
follows [28]:

1) Analyze the changes between two versions and
automatically generate a large number of test cases
that cover the changed parts of the code.

2) Run the generated test cases on the old and new
versions of the code and identify differences in the
tests’ outputs.

3) Analyze the identified differences and presenting
them to the developer.

BERT analyzes behavioral differences by comparing
the program outcomes. SoftLink complements BERT
by visualizing behavioral variations. SoftLink can work
seamlessly with existing BERT tools, and display the
correlations between consecutive versions. As an
enhancement to BERT, ViBERT works in the following
steps:
1) Insert AspectJ instrumentations to the test suite

automatically generated in Step 1 of BERT that
focuses on the changed parts of the program.

2) Run Step 2 of BERT and generate traces for the two
executions to be compared.

3) Use SoftLink to visualize the correlations between

two versions of program executions and highlight
their differences.

3.2 Design Characteristics

As a software visualization tool, SoftLink is
specifically tailored to correlation visualization.
SoftLink visualizes abstracted call graphs on 2D planes
in a 3D space. SoftLink takes advantage of the benefits
of angled and paralleled views. As the viewpoint is
changed, the arrangements of planes can be
dynamically updated accordingly, in a similar fashion
as a camera model. Planes with corresponding
correlations interesting to the user always face the user
as depicted in Figure 5.

Figure 5: Auto-orienting views.

We design the visual features of SoftLink following
the general functional requirements proposed by Kienle
and Müller [23]:

 Views (linked static views and dynamically
synchronized views): SoftLink incorporates three
views: a 3D correlation view, a modulation view,
and a source code view. These views are linked
such that the change of one view automatically
triggers the changes of the others. Moreover, these
views, especially the 3D correlation view, are

X

Z

Y X

Z

Y

C.Zhao et al. / Journal of Visual Language and Computing (2020) 31-41

dynamically synchronized with the underlying
data.

 Abstraction: To effectively visualize complex
software systems, a visualization tool should
support adjustable granularities (i.e. abstraction
levels) and provide sufficiently detailed
information on demand. We use a multi-level
abstraction on execution traces to enable in-dept
exploration of program. In SoftLink, nested
method calls can be folded or unfolded
corresponding to the change of the abstraction
level.

 Search and Code Proximity: Finding text strings
in the source code corresponding to objects in the
visual representation is considered “absolutely
essential” [23]. SoftLink provides a query function
with a search bar, where users can easily locate
source code to their interests.

 Automatic Layout: SoftLink uses a multi-plane
presentation to visualize multiple executions. It
automatically displays execution planes in the 3D
space. Planes are dynamically angled towards the
user so that both individual executions and their
correlations have the best exposure.

 History/Undo: SoftLink has an interactive
interface that allows the user to click on visual
objects while navigating in the 3D space.
Iteratively, upon each click, a new nested plane
visualizing the detailed information is popped up.
All the upper-level planes are kept on the screen to
show the browsing history.

4. Execution Traces

4.1 Execution Trace Collection

Obtaining execution traces is the first step to correlate
executions. We choose AspectJ[2], a Java
implementation of aspect-oriented programming, to
intercept program execution metadata, because it can
non-intrusively extract runtime traces with a high level
of flexibility and expressiveness.

Using the following aspect in Figure 6, we record
each method call’s signature along with the name of the
object it belongs to and the time the program enters and
leaves the method.
public aspect Trace {
 pointcut allCalls() : execution(* *.*(..));
 before() : allCalls() {
 String signature =
thisJoinPointStaticPart.getSignature().toShortString();
 if(!signature.isEmpty()) {
 String log = "-> "+ signature+ "$" +
Thread.currentThread().getName()+ "*" +
System.currentTimeMillis() + "$";
 System.out.println(log);
 }
 }

 after() : allCalls() {
 String signature =
thisJoinPointStaticPart.getSignature().toShortString();
 if(!signature.isEmpty()) {
 String log = "<- "+ signature+ "$" +
Thread.currentThread().getName()+ "*" +
System.currentTimeMillis() + "$";

 System.out.println(log);
 }
 }
}

Figure 6: Definition of Aspect

The plain-text trace log captured by this aspect is then
imported to SoftLink, and automatically transformed to
call graphs specified in GraphML [3], an XML-based
graph presentation. In Softlink, we enhance our
previous work on program abstraction [43] and built an
Abstracer to perform such transformation.

4.2 Execution Trace Representation and
Abstraction

Execution traces need to be properly represented and
abstracted before being analyzed as otherwise the user
can be misled by partial information or overwhelmed by
too much trivial information. Proper abstraction at
various granularities makes it possible to display a large
volume of program data on limited visual space. When
comparing program executions, we identify equivalent
substructures in two abstracted call graphs. We
represent the call graph G(N,E) in a tree structure that
consists of multiple caller-callee chains built from the
GraphML runtime trace.

Definition 1: A call graph G(N,E) is a directed node-
link graph, where the set of nodes N denote methods and
the set of edges E represent method invocations.

Each edge directs from a caller to a callee. Each
method invocation is annotated with two parameters:
the depth and the length of the call chain. The depth here
refers to the depth of the call chain through which we
adjust the granularity of the visualization. The length of
a call chain is defined as the number of nodes in the path
from the root to the leaf in a call graph, which is used to
prune short call chains in Abstracer. Each directed edge
is annotated with the number of method call repetitions.
For instance, there are three call chains in the call graph
of Figure 7: a-b, a-c-d, and a-c-e. The lengths of each
call chain are 2, 3, and 3, respectively. The depth of
each method is as follows: depth(a) = 1, depth(b) =

 a
 b

 c
 d

 e

Figure 7: An example for abstraction

C.Zhao et al. / Journal of Visual Language and Computing (2020) 31-41

depth(c) = 2, depth(d) = depth(e) = 3.

Abstracer, the abstraction engine integrated into
SoftLink, is used to remove less significant information
not to be shown in the graphical representation, such as
method calls that contribute little to the comprehension
of program behavior. We consider three criteria for
execution abstraction:

 Continuous repetitions. Continuously repeated
method invocations can be collapsed to one
occurrence. Such repetitions mostly manifest
themselves as loops. For instance, in a sequence of
method calls EABCABCF (a letter represents a
method call), the call sequence ABC is considered
duplicated. Thus, only one occurrence of ABC is
shown in the call graph. We can label the
corresponding edge in the call graph with the
number of repetitions. Noncontiguous repetitions
are not collapsed because they may belong to
different abstraction levels.

 Depth of methods in a call chain. This type of
abstraction relies on the depth threshold depth (an
integer specified by the user). Methods whose
nesting depths in the call chain are deeper than this
threshold can be collapsed. For instance, given
depth =3, the methods with a depth of 4 or more are
collapsed, and not shown in the abstracted
scenario. Low-level methods provide detailed

information for high-level abstract events and can
be unfolded if the user lowers the abstraction level.

 Short call chains. A long call chain including
more method invocations may represent a
significant function of a program. SoftLink uses
parameter length as a threshold to specify the
minimum length of call chains. Method
invocations with call chains shorter than length are
pruned. SoftLink abstracts the call graph by
traversing it and collapse methods according to the
customizable parameters depth and length.

5. SOFTLINK

5.1 Overview

Figure 8 shows the interface of SoftLink that includes
three views: a 3D correlation view, a modulation view,
and a source code view. The controls of SoftLink are on
the menu bar. The user can use the file menu to import
trace logs and specify the number of executions to be
correlated. The action menu includes commands for
specifying trace abstraction levels and constructing
correlations. SoftLink first loads the selected plain-text
trace files and transforms the files into call graphs in
GraphML. It trims the call graphs based on the
abstraction parameters set by the user. Call graphs are
displayed on individual 2D planes, similar to sequence

Figure 8: Three views of SoftLink.

3D correlation view

Source code view

Modulation view

C.Zhao et al. / Journal of Visual Language and Computing (2020) 31-41

diagrams. Then, the correlations are visualized in the
3D correlation view. The 3D scene is automatically
rendered when the user changes the abstraction level.

5.2 Views in SoftLink

The 3D correlation view is built using Java3D. Each
brown sphere represents an object. Green spheres
represent methods. Horizontal green lines indicate the
calling relationship between methods. Purple lines
represent the correlations between two executions.
These colors are selected to achieve some contrast
against the background. This 3D scene provides users
with multiple viewpoints to observe the relationship
between executions. Users can choose to observe the
differences or commonalities.

The modulation view shows the hierarchical
packaging structure of the program in a force-directed
layout using the E-spring Algorithm [24]. High-level
organizations of system modules represent the
composition of a system and are commonly visualized
using the tree structure in a node-link graphical format.
Each sub-package is a child node of its parent package,
while tree leaves represent files. This modulation view
gives developers an overview of the program structure.

The source code view provides a fast access to
methods in the source file corresponding to the visual

entity that the user is interested in. Having spotted
desired information in the 3D visual representation, the
user might need to check the corresponding source code.
The source code view of SoftLink is synchronized with
the visual representation in the 3D correlation view by
highlighting the queried method in red. The file path of
the searched method is shown in the status bar in the
source code view.

5.3 Iterative Multi-level Nested Visualization

5.3.1 Zooming and Rotatable Scene

SoftLink provides efficient interaction and navigation
capabilities. In the current implementation, mouse is
used for picking and rotating individual planes and
visual objects in the 3D correlation view. SoftLink
allows the user to move or rotate each single plane to
any angle around any axis in 3D space. The keyboard is
used to control the entire 3D scene, such as zooming,
rotating, and moving the user’s viewpoint. To provide
customizable views, when the viewpoint moves, each
individual plane in the scene can be adjusted
accordingly to the viewpoint.

5.3.2 Iterative Multi-level Nested Visualization

Program execution is hard to visualize if all the
method invocations need to be displayed. Even if only
a portion of a software system is executed, the collected

POPUP PLANE

Figure 9: Visual representation of correlations between two executions.

OBJECT

CORRELATION

METHOD CALL

C.Zhao et al. / Journal of Visual Language and Computing (2020) 31-41

traces can be millions of lines, making it
incomprehensible. To address this limitation, SoftLink
utilizes multi-level abstraction and iterative drill-down
visualization as in Figure 9. When the user clicks a
visual object representing a method, the nested
interactions within that method are shown in a popup
plane attached to the clicked method. Iteratively, the
visual objects on the newly popped plane can also be
unfolded upon the user’s click. By drilling down
through multiple planes, the user can get more detailed
information. This capability is particularly suitable for
a system equipped with an eye-tracker [22].

6. Case Study

We applied ViBERT on an industrial software
package, Joda-Time [4], a Java date and time library.
Joda-Time 1.6.2 has about 4615 classes in the source
code, and 4080 classes in the testing code. We select a
number of real bugs detected and fixed in the
development process of Joda-Time.

Both BERT and ViBERT focus on the changes
between two adjacent revisions, we select two revisions
of Joda-Time to simulate the regression testing.
Suppose revision ri fixes a bug in revision rj, we can
interpret that revision rj introduces the bug in revision
ri, and use this bug to simulate a real regression fault.
We apply ViBERT to identify the regression faults in
the changes between revisions of the program.

The Subversion repository[1] of Joda-Time contains
about 1610 revisions. We search the history for the
revisions that have fixed bugs in previous revisions. 156
version pairs <ri, rj> are found, where revision ri fixes
certain bugs in revision rj. Finding regression faults in a
software’s history is time consuming, requiring a
manual process:

(1) Search the revision history for a bug that has been
fixed.

(2) Locate the revision and the source code where the
bug first appears.

(3) Examine whether the interface of the source code
has been changed between the revision that introduces
the bug and the revision before it. If the interface is not
changed, then the bug is considered a regression fault
that was introduced by the new revision.

The selected revision pair is <r1576, r1577>.
Revision r1577 fixes a bug in the method
AbstractDuration.toString() in revision r1576. This
method produces wrong output for negative inputs.
Putting these two revisions in a regression testing
setting, we take revision r1577 as the old version
without the bug, and revision r1576 as the new version
that introduces bugs.

To catch the bug using regression testing, developers
first study the changes the new version has made to the
source code, and then create test cases targeting the
changes. A test suite containing nine JUnit test cases for
the method AbstractDuration.toString() is defined as

shown in Figure 10:

public void testToString() {
01 assertEquals("PT0S",

 new Duration(0L).toString());
02 assertEquals("PT10S",

 new Duration(10000L).toString());
03 assertEquals("PT1S",

 new Duration(1000L).toString());
04 assertEquals("PT12.345S",

 new Duration(12345L).toString());
05 assertEquals("PT-12.345S",

 new Duration(-12345L).toString());
06 assertEquals("PT-1.123S",

 new Duration(-1123L).toString());
07 assertEquals("PT-0.123S",

 new Duration(-123L).toString());
08 assertEquals("PT-0.012S",

 new Duration(-12L).toString());
09 assertEquals("PT-0.001S",

 new Duration(-1L).toString());
}
Figure 10: Test cases in Joda-Time for Duration.toString().

We first run the existing JUnit test suite on the new
version of the program, the test suspends at test case 07,
indicating that the actual output is not expected. By
observing the changes that the new version has made to
the source code, we can conclude that the program
behavior starts to differ when the length of the output is
greater than 8 (or 7 if the output is a positive number).
In the given test suite, however, starting from test case
04, the lengths of the expected outputs are all greater
than 8. The program actually behaves differently since
test case 04. Therefore, although running the existing
test suite can eventually capture the bug, it could have
revealed the change earlier (from test case 04 instead of
test case 07).

By exploring the behavioral variations of these two
revisions, ViBERT intends to detect this potential
problem, and alerts developers with visual hints. We
run the test cases on both versions and compare their
differences. As an enhancement to behavioral
regression testing, we use visual representations to
show behavioral difference. We obtain the execution
traces by embedding AspectJ instrumentations into
JUnit testing code. Then, ViBERT visualizes the
correlations between the two executions. Figure 11
shows the result in SoftLink. The left plane represents
revision r1577, and the right one represents r1576. The
numbers correspond to the test cases in Figure 10.

The left plane successfully runs all the test cases. The
right plane shows only 7 test cases, because the test
stops at test case 07. We notice that since test case 04,
two executions exhibit different behaviors due to the
changes to the code. The method calls to
“appendPaddedInteger” in the right panel (revision:
r1576) do not exist in the left panel (revision: r1577).
Via visual inspection, developers can identify the

C.Zhao et al. / Journal of Visual Language and Computing (2020) 31-41

influence of the changes to the program behavior, and
further analyze whether those changes introduce new
errors.

As shown in the case study, ViBERT shows the
differences between two executions using visual
representations. It displays where are the differences
and the context of the differences in the execution. In
this experiment, we use one revision pair as one
example. Other revision pair can be compared in a
similar fashion. In software testing, there are many test
coverage criteria and metrics. It is worthwhile to note
that as Behavior Regression Testing focuses only on
comparing method invocations in program executions,
not all types of program errors can be identified by
behavior regression testing.

7. Related Work

7.1 Program Behavior Comprehension

Numerous researchers have focused on visualizing
program executions. Comprehensive surveys of
dynamic analysis and software visualization [15][35]
are available. Traditionally program behaviors are
represented as node-link diagrams in a two-dimensional
space. Examples include UML sequence diagrams [10],
space-time diagrams, and call graphs [42].

Researchers utilize essential visual elements such as
color, shape, and a variety of visual layouts to represent
software information. Popular layouts include trees (e.g.
tree map [34][39]), tables, graphs and diagrams.

TraceVis [30] visualizes executed program instructions
by sequentially displaying microprocessor instructions
in a 2D plane. It supports queries, different levels of
zooming, and annotations on colorful blocks.
GAMMATELLA [27] visualizes executions in three
levels in 2D: a file level represented in a miniaturized
view, a system level using a tree map, and a statement
level. MetropoIJS [34] visualizes static and dynamic
aspects of largescale program written in Javascript with
Treemaps. These approaches, however, focus on the
visualization of single execution scenario and do not
support a comparison of different program executions.
Our study complements previous research by applying
existing successful layouts on individual 2D planes in
SoftLink.

Apart from 2D visualization, more 3D software
visualization environments are built through virtual
realities. Metaphors such as cities were used to
represent software systems [11][36]. Fittkau et al. [20]
designed controlled experiments to compare the trace
visualization tools EXTRAVIS [14] and ExplorViz in
program comprehension tasks. EXTRAVIS uses
circular bundling and a massive sequence view, and
ExplorViz uses the city metaphors. Scalability in
software visualization are commonly addressed by
using multiple levels of abstraction [19][41].

7.2 Regression Testing and Visualization

Regression testing aims at uncovering new errors
after changes are made to a software system. The
increasing size of software systems makes thorough

(01)

(02)

(03)

(04)

(05)

(06)

(07)

(08)

(09)

(01)

(02)

(03)

(04)

(05)

(06)

(07)

Figure 11: ViBERT on revision pair <r1577, r1576> of Joda-Time. The left plane visualizes revision r1577, and the right one presents r1576.

C.Zhao et al. / Journal of Visual Language and Computing (2020) 31-41

regression testing a costly endeavor. In addition to
traditional test selection and prioritization techniques,
researchers have applied visual analytics to regression
testing. Engström et al. [18] utilize a heat map (mosaic
visualization) to show test history and test covered
items. Chen and Ince [13] design a tabular visual
representation of regression test results. Different colors
are assigned to the blocks on the table and fisheye
enlarges the rows of users’ interest.

BERT [28][37] is a differential testing technique that
identifies behavioral differences between two versions
of a program through automatically generated test cases
and dynamic analysis. Different from previous testing
work, ViBERT compares dynamic program behavior
and complements the BERT technique with a visual
tool SoftLink.

8. Conclusion and Future work

Regression testing aims at identifying unnoticed
faults caused by changes to software. Behavioral
regression testing uses dynamic analysis to compare
new and old versions of a program in regression testing.
This paper has proposed ViBERT, a visual approach to
comparing program behavior. Specifically, we had built
a 3D environment that allows developers to view the
correlations and differences between two versions of
program executions. In contrast to other visualization
tools, our approach focuses on consecutive behavior
comparison. It helps users to interpret the behavioral
differences within the context of the executions.

Our future work is to conduct a usability study and
gather more feedbacks from users. We also plan to
integrate this environment with popular IDEs, such as
Eclipse and IntelliJ. More experiments on larger
software systems will also be conducted. Another
possible extension is that the viewpoint-oriented
representation can be enhanced with an eye tracker. The
position of the pupil in the eye-tracking controller
screen is mapped to that in the visual space. We can use
the eye tracker to capture the user’s visual focus, and as
the viewer’s focus moves, the orientations of planes will
be automatically updated accordingly.

References

[1] Apache Subversion. http://subversion.apache.org/

[2] AspectJ.https://www.eclipse.org/aspectj/

[3] GraphML. http://graphml.graphdrawing.org/

[4] Joda-Time. http://joda-time.sourceforge.net/

[5] JUnit. http://www.junit.org/

[6] Alexandru C. V., Proksch S., Behnamghader P. and Gall H. C.,
“Evo Clocks: Software Evolution at a Glance,” Working
Conference on Software Visualization (VISSOFT), 2019, pp.
12-22.

[7] Ball T. and Eick S. G., “Software Visualization in the Large”.
Computer, vol. 29,1996, pp. 33-43.

[8] Beck F., Siddiqui H. A., Bergel A. and Weiskopf D., “Method
Execution Reports: Generating Text and Visualization to
Describe Program Behavior”. IEEE Working Conference on
Software Visualization, 2017, pp. 1-10.

[9] Behnamghader P., Alfayez R., Srisopha K., and Boehm B.,
“Towards Better Understanding of Software Quality Evolution
through Commit-Impact Analysis”. IEEE International
Conference on Software Quality, Reliability and Security
(QRS), 2017, pp. 251-262.

[10] Briand L.C., Labiche Y., He S., “Automating Regression Test
Selection based on UML Designs”. Information and Software
Technology, Vol. 51, No.1, 2009, pp. 16-30.

[11] Capece N., Erra U., Romano S., and Scanniello G., “Visualising
a Software System as a City Through Virtual Reality”.
Augmented Reality, Virtual Reality, and Computer Graphics,
2017, pp. 319–327.

[12] Castro D. and Schots M., “Analysis of Test Log Information
through Interactive Visualizations”. International Conference
on Program Comprehension, 2018, pp. 156-166.

[13] Chen R. and Ince T., “Visualizing Regression Test Results”.
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=B6B
26126F10004A55199CC40E57E896D?doi=10.1.1.366.3623&
rep=rep1&type=pdf.

[14] Cornelissen B., Holten D., Zaidman A., Moonen L., Wijk J. J.
v., and Deursen A. V., “Understanding Execution Traces Using
Massive Sequence and Circular Bundle Views”. IEEE
International Conference on Program Comprehension, 2007, pp.
49-58.

[15] Cornelissen B., Zaidman A., Deursen A. V., and Moonen L., “A
Systematic Survey of Program Comprehension through
Dynamic Analysis”. IEEE transaction on Software engineering,
Vol 35, No. 5, 2009, pp. 684-702.

[16] Cornelissen B., Zaidman A., and Deursen A. V., “A Controlled
Experiment for Program Comprehension through Trace
Visualization”. IEEE Transactions on Software Engineering,
Vol.37, No.3, 2011, pp.341-355.

[17] Eick S. C., Steffen J. L. and Sumner, E. E., “Seesoft - a tool for
Visualizing Line Oriented Software Statistics”. IEEE
Transactions on Software Engineering, Vol. 18, No. 11,1992,
pp. 957-968.

[18] Engström E., Mantylä M., Runeson P. and Borg M.,
“Supporting Regression Test Scoping with Visual Analytics”.
IEEE 7th International Conference on Software Testing,
Verification and Validation, 2014, pp. 283-292.

[19] Feng Y., Dreef K., Jones J. A., and Deursen A. V., “Hierarchical
Abstraction of Execution Traces for Program Comprehension”.
International Conference on Program Comprehension, 2018, pp.
86-96.

[20] Fittkau F., Finke S., Hasselbring W. and Waller J., “Comparing
Trace Visualizations for Program Comprehension through
Controlled Experiments”. IEEE International Conference on
Program Comprehension, 2015, pp. 266-276.

[21] Lanza M. and Ducasse S., “Polymetric views - a lightweight
visual approach to reverse engineering”. IEEE Transactions on
Software Engineering, Sep. 2003, Vol. 29, No. 9, pp. 782–795.

[22] Jbara A. and Feitelson D. G., “How Programmers Read Regular
Code: A Controlled Experiment Using Eye Tracking”. IEEE
International Conference on Program Comprehension, 2015, pp.
244-254.

[23] Kienle H. M. and Müller H. A., “Requirements of Software
Visualization Tools: A Literature Survey”. 4th IEEE
International Workshop on Visualizing Software for
Understanding and Analysis, 2007, pp. 2-9.

[24] Kumar P., Zhang K., Wang Y., "Visualization of Clustered
Directed Acyclic Graphs without Node Overlapping". 12th
International Conference on Information Visualization, 2008,
pp. 38-43.

[25] Mostafa S., Wang X., Xie T., “PerfRanker: Prioritization of
Performance Regression Tests for Collection-intensive
Software”. International Symposium on Software Testing and
Analysis, 2017, pp. 23-34.

[26] Nardo D. D., Alshahwan N., Briand L. C., Labiche Y.,
“Coverage-based Regression Test Case Selection, Minimization
and Prioritization: a Case Study on an Industrial System”.

C.Zhao et al. / Journal of Visual Language and Computing (2020) 31-41

Software Testing, Verification, and Reliability, Vol 25, No.4,
2015, pp. 371-396.

[27] Orso A., Jones J. A., Harrold M. J., and Stasko J.,
“GAMMATELLA: Visualization of Program-execution Data
for Deployed Software”. 26th International Conference on
Software Engineering, pp. 699-700, 2004.

[28] Orso A. and Xie T., “BERT: BEhavioral Regression Testing”.
International Workshop on Dynamic Analysis, pp. 36-42, 2008.

[29] Reiss S. P., “Visual Representations of Executing Programs”.
Journal of Visual Languages and Computing, vol. 18, pp. 126-
148, 2007.

[30] Roberts J. and Zilles C., “TraceVis: An Execution Trace
Visualization Tool”. 1st Workshop on Modeling,
Benchmarking and Simulation, 2005, pp. 31-38.

[31] Rothermel G., Harrold M. J., “Analyzing Regression Test
Selection Techniques”. IEEE Transactions on Software
Engineering, Vol.22, No.8,1996, pp. 529-551.

[32] Rothermel G., Elbaum S. G., Malishevsky A. G., Kallakuri P.,
Qiu X., “On Test Suite Composition and Cost-effective
Regression Testing”. ACM Transaction on Software
Engineering and Methodology, Vol. 13, No.3, 2004, pp.277-
331.

[33] Rothermel G., “Improving Regression Testing in Continuous
Integration Development Environments”. keynote at
ESEC/SIGSOFT FSE 2018.

[34] Scarsbrook J. D., K.L. KO R., Rogers B., Brainbriage D.,
“MetropolJS: Visualizing and Debugging Large-Scale
JavaScript Program Structure with Treemaps”. International
Conference on Program Comprehension, 2018, pp.389-392.

[35] Teyseyre A. R. and Campo M. R., “An Overview of 3D
Software Visualization”. IEEE Transactions on Visualization
and Computer Graphics, Vol. 15, No. 1, 2009, pp. 87-105.

[36] Wettel R. and Lanza M., “Codecity: 3D Visualization of
Largescale Software”. Companion of 30th International
Conference on Software Engineering, 2008, pp. 921–922.

[37] Wei J., Orso A., and Xie T., “Automated Behavioral Regression
Testing”. 3rd International Conference on Software Testing,
Verification and Validation, 2010, pp. 137-146.

[38] Stasko J. T., Brown M. H., Domingue J. B., Price B. A.,
Software Visualization: Programming as a Multimedia
Experience, MIT Press, 1998.

[39] Yang Y.L., Zhang K., Wang J.R., and Nguyen Q.V., “Cabinet
Tree: An Orthogonal Enclosure Approach to Visualizing and
Exploring Big Data”. Journal of Big Data, Springer, 2:15,
December 2015.

[40] Zhang K., ed., Software Visualization - From Theory to
Practice. Boston: Kluwer Academic Publishers, 2003.

[41] Zhao C., Zhang K., Hao J., and Wong W. E., “Visualizing
Multiple Program Executions to Assist Behavior Verification”.
3rd IEEE International Conference on Secure Software
Integration and Reliability Improvement, 2009, pp. 113-122.

[42] Zhao C., Kong J. and Zhang K., “Program Behavior Discovery
and Verification: A Graph Grammar Approach”. IEEE
Transactions on Software Engineering, Vol. 36, No. 3, 2010, pp.
431-448.

[43] Zhao C., Zhang K., and Lei Y., “Abstraction of Multiple
Executions of Object-oriented Programs”. ACM symposium on
Applied Computing, 2009, pp. 549-550.

