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A B S T R A C T 

 

Regression testing is a type of software testing that aims at identifying faults caused by code changes. 
Regression testing is important especially during software evolution and maintenance. As developers 
integrate programs or make updates to a software system, they need to make sure the changes do not 
adversely affect other parts of the system. Using dynamic analysis, behavioral regression testing 
(BERT) is one of the techniques proposed to solve the problem by re-executing test cases that target 
the affected area.  It compares the behavior of a program before and after the changes upon certain test 
cases. This paper proposes Visual BEhavioral Regression Testing (ViBERT), a visualization approach 
to comparing the behavioral differences between the new and old versions of a program in regression 
testing. We build a prototype called SoftLink, a visual environment that shows correlation/difference 
between two versions of a program behavior. SoftLink displays call graphs of two executions on angled 
parallel planes in a 3D space, and constructs correlations between them.  It provides developers with 
an intuitive interpretation of the testing results. A case study is presented. 

                                                                                                                    © 2020 KSI Research                                

 
 

1. Introduction 

Software visualization is defined as “the use of the 
crafts of typography, graphic design, animation and 
cinematography with modern human computer 
interaction and computer graphics technology to 
facilitate both the human understanding and effective 
use of computer software” [38].  Visual clues such as 
color, shape, and metaphors ease the cognitive load of 
understanding software systems [7][40]. Numerous 
research has been proposed and various tools have been 
built to visualize different aspects of software systems, 
such as static program structures [11][17][21], dynamic 
program executions [8][14][16][29], software 
evolution[6][9], and debugging results [12]. 

Regression testing is an important type of software 
testing. During a software development and 

maintenance process, software may go through many 
changes due to system integration or software updates. 
Each change may introduce unwanted faults to 
software. Regression testing re-executes existing test 
cases after the source code is changed in order to 
determine whether the modified version has introduced 
regression faults into the previous working version [26]. 
Regression testing techniques heavily rely on the 
quality and sufficiency of test cases. Testers have to 
compromise between making thorough testing and 
lowering the cost. Numerous testing selection and 
prioritization approaches have been proposed 
[10][25][26][31][32][33].  

Behavioral regression testing (BERT) [28][37] 
addresses this dilemma by identifying behavioral 
differences between two versions of a program through 
dynamic analysis. Since two consecutive revisions of a 
program usually do not differ significantly, BERT can 
reduce the number of test cases needed while achieving 
promising results.  Behavioral regression testing relies 
on comparing the behavioral differences between two 
versions of a program through dynamic analysis to 
identify unforeseen side effects.  
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Inspecting the differences between versions of 
program executions is tedious and error prone. To 
strengthen the effectiveness of BERT, this paper 
proposes Visual BEhavioral Regression Testing 
(ViBERT), a visual approach for comparing program 
behaviors in regression testing. We have built a semi-
automatic tool called Softlink. It is a visual environment 
that displays and compares two or more program 
executions in a 3D space. It provides multiple 
viewpoints and directly shows the correlations between 
execution traces. The novelty of our approach is that it 
not only visually shows the differences and 
commonalities of two consecutive executions, but also 
provides a mental image of the location of the 
behavioral differences within the context of method 
calls. Our work enhances BERT with a visual 
representation. To our best knowledge, no studies have 
been conducted on comparing execution traces using 
3D visualization in regression testing.  

The rest of the paper is organized as follows. Section 
2 illustrates a motivating example. Section 3 presents 
the overview of the approach. Section 4 describes how 
the execution traces are collected and abstracted. 
Section 5 shows the construction of SoftLink. Section 6 
explains a case study and analyzes the results. Related 
work is reviewed in Section 7. Section 8 concludes the 
paper and presents our future work. 

2. A Motivating Example 

In this section, we present a motivating example to 
show how visualization can enhance BERT. The class 
Money is a Java package of JUnit4 library illustrating 
how to write unit tests with Junit [5]. As shown in 
Figure 1, Money.equals() is a method of Money that 
determines whether two monies are equal or not. 

public boolean equals(Object anObject) { 
        if (isZero())  
                if (anObject instanceof IMoney) 
                        return ((IMoney)anObject).isZero(); 
        if (anObject instanceof Money) { 
                Money aMoney = (Money)anObject; 
                return aMoney.currency().equals(currency()) 
&& amount() == aMoney.amount(); 
        } 
        return false; 
} 

Figure 1: Original version of Money.equals(). 

 

Figure 2 shows the JUnit test cases for testing the 
method Money.equals(). 

public void testMoneyEquals() { 

01    assertTrue ( !f12CHF.equals(null) );  
        Money equalMoney = new Money(12, "CHF"); 
02    assertEquals (f12CHF, f12CHF); 
03    assertEquals (f12CHF, equalMoney); 
04    assertEquals (f12CHF.hashCode(), 
                                equalMoney.hashCode() ); 
05    assertTrue ( !f12CHF.equals(f14CHF) ); 
} 

Figure 2: Test cases in Money for Money.equals(). 

We deliberately remove the statement 
aMoney.currency().equals(currency()) && as shown in 
Figure 3, simulating a situation that a developer changes 
the code but introduces an error: the program omits 
checking currency when it compares two monies. 

public boolean equals(Object anObject) { 
        if (isZero())  
                if (anObject instanceof IMoney) 
                        return ((IMoney)anObject).isZero(); 
        if (anObject instanceof Money) { 
                Money aMoney = (Money)anObject; 
                return aMoney.currency().equals(currency()) 
&&  amount() == aMoney.amount(); 
        } 
        return false; 
} 

Figure 3: Modified version of Money.equals(). 

After running the test on the modified version, JUnit 
failed to catch the bug. The original Junit test cases are 
not sufficient to catch the error because the monies in 
the test cases have the same type of currency, such as 
f12CHF and f14CHF.  

By visually comparing the runtime behaviors of two 
versions of the program, however, developers can easily 
identify the behavioral variations. Figure 4 correlates 
the behavior of two versions of the program on two 2D 
planes. There are observable differences in the visual 
presentation. The red circles drawn by hands on the left 
plane indicate the method invocations (currency()) 
executed in the original code but not executed in the 
modified version. With this visual hint, developers can 
easily locate the code affected by the modification and 
further check whether these behavioral variations are 
caused by errors or intended modifications. To further 
illustrate our approach, a case study has been conducted 
on an open-source program in Section 6. The initial 
results provide shows that our approach reveals the 
behavioral variations of the systems under study with a 
visual presentation. 
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Figure 4: Visual representation of the Money executions. The left plane presents the original version, and the right one 
denotes the modified version. The purple correlations lines show the mapping between these two executions. 

3. Visual Behavioral Regression Testing 
(ViBERT)  

3.1 Approach Overview 

Behavioral regression testing (BERT) has been used 
as an effective technique to identify behavioral 
differences between two versions of a program through 
dynamic analysis. Since two consecutive revisions of a 
program usually do not differ significantly, BERT can 
greatly reduce the number of test cases needed while 
achieving promising results. BERT typically works as 
follows [28]: 

1) Analyze the changes between two versions and 
automatically generate a large number of test cases 
that cover the changed parts of the code. 

2) Run the generated test cases on the old and new 
versions of the code and identify differences in the 
tests’ outputs. 

3) Analyze the identified differences and presenting 
them to the developer. 

BERT analyzes behavioral differences by comparing 
the program outcomes. SoftLink complements BERT 
by visualizing behavioral variations. SoftLink can work 
seamlessly with existing BERT tools, and display the 
correlations between consecutive versions. As an 
enhancement to BERT, ViBERT works in the following 
steps: 
1) Insert AspectJ instrumentations to the test suite 

automatically generated in Step 1 of BERT that 
focuses on the changed parts of the program. 

2) Run Step 2 of BERT and generate traces for the two 
executions to be compared. 

3) Use SoftLink to visualize the correlations between 

two versions of program executions and highlight 
their differences.  
 

3.2 Design Characteristics 

As a software visualization tool, SoftLink is 
specifically tailored to correlation visualization. 
SoftLink visualizes abstracted call graphs on 2D planes 
in a 3D space. SoftLink takes advantage of the benefits 
of angled and paralleled views.  As the viewpoint is 
changed, the arrangements of planes can be 
dynamically updated accordingly, in a similar fashion 
as a camera model. Planes with corresponding 
correlations interesting to the user always face the user 
as depicted in Figure 5. 

 
Figure 5: Auto-orienting views. 

We design the visual features of SoftLink following 
the general functional requirements proposed by Kienle 
and Müller [23]:  

 Views (linked static views and dynamically 
synchronized views): SoftLink incorporates three 
views: a 3D correlation view, a modulation view, 
and a source code view. These views are linked 
such that the change of one view automatically 
triggers the changes of the others. Moreover, these 
views, especially the 3D correlation view, are 
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dynamically synchronized with the underlying 
data.  

 Abstraction: To effectively visualize complex 
software systems, a visualization tool should 
support adjustable granularities (i.e. abstraction 
levels) and provide sufficiently detailed 
information on demand. We use a multi-level 
abstraction on execution traces to enable in-dept 
exploration of program. In SoftLink, nested 
method calls can be folded or unfolded 
corresponding to the change of the abstraction 
level. 

 Search and Code Proximity: Finding text strings 
in the source code corresponding to objects in the 
visual representation is considered “absolutely 
essential” [23]. SoftLink provides a query function 
with a search bar, where users can easily locate 
source code to their interests.  

 Automatic Layout: SoftLink uses a multi-plane 
presentation to visualize multiple executions. It 
automatically displays execution planes in the 3D 
space. Planes are dynamically angled towards the 
user so that both individual executions and their 
correlations have the best exposure. 

 History/Undo: SoftLink has an interactive 
interface that allows the user to click on visual 
objects while navigating in the 3D space. 
Iteratively, upon each click, a new nested plane 
visualizing the detailed information is popped up. 
All the upper-level planes are kept on the screen to 
show the browsing history. 

4. Execution Traces  

4.1 Execution Trace Collection 

Obtaining execution traces is the first step to correlate 
executions. We choose AspectJ[2], a Java 
implementation of aspect-oriented programming, to 
intercept program execution metadata, because it can 
non-intrusively extract runtime traces with a high level 
of flexibility and expressiveness. 

Using the following aspect in Figure 6, we record 
each method call’s signature along with the name of the 
object it belongs to and the time the program enters and 
leaves the method. 
public aspect Trace { 
    pointcut allCalls() : execution( * *.*(..)); 
    before() : allCalls() { 
        String signature = 
thisJoinPointStaticPart.getSignature().toShortString(); 
        if(!signature.isEmpty()) { 
            String log = "-> "+ signature+ "$" + 
Thread.currentThread().getName()+ "*" + 
System.currentTimeMillis() + "$"; 
            System.out.println(log); 
        } 
    } 

 
    after() : allCalls() { 
        String signature = 
thisJoinPointStaticPart.getSignature().toShortString(); 
        if(!signature.isEmpty()) { 
            String log = "<- "+ signature+ "$" + 
Thread.currentThread().getName()+ "*" + 
System.currentTimeMillis() + "$"; 

            System.out.println(log); 
        } 
    } 
} 

Figure 6: Definition of Aspect 

The plain-text trace log captured by this aspect is then 
imported to SoftLink, and automatically transformed to 
call graphs specified in GraphML [3], an XML-based 
graph presentation. In Softlink, we enhance our 
previous work on program abstraction [43] and built an 
Abstracer to perform such transformation. 

4.2 Execution Trace Representation and 
Abstraction 

Execution traces need to be properly represented and 
abstracted before being analyzed as otherwise the user 
can be misled by partial information or overwhelmed by 
too much trivial information. Proper abstraction at 
various granularities makes it possible to display a large 
volume of program data on limited visual space. When 
comparing program executions, we identify equivalent 
substructures in two abstracted call graphs. We 
represent the call graph G(N,E) in a tree structure that 
consists of multiple caller-callee chains built from the 
GraphML runtime trace. 

Definition 1: A call graph G(N,E) is a directed node-
link graph, where the set of nodes N denote methods and 
the set of edges E represent method invocations.  

Each edge directs from a caller to a callee. Each 
method invocation is annotated with two parameters: 
the depth and the length of the call chain. The depth here 
refers to the depth of the call chain through which we 
adjust the granularity of the visualization. The length of 
a call chain is defined as the number of nodes in the path 
from the root to the leaf in a call graph, which is used to 
prune short call chains in Abstracer. Each directed edge 
is annotated with the number of method call repetitions. 
For instance, there are three call chains in the call graph 
of Figure 7: a-b, a-c-d, and a-c-e. The lengths of each 
call chain are 2, 3, and 3, respectively. The depth of 
each method is as follows: depth(a) = 1, depth(b) = 

 a 
 b 

 c 
 d 

 e 

Figure 7: An example for abstraction 
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depth(c) = 2, depth(d) = depth(e) = 3. 

Abstracer, the abstraction engine integrated into 
SoftLink, is used to remove less significant information 
not to be shown in the graphical representation, such as 
method calls that contribute little to the comprehension 
of program behavior. We consider three criteria for 
execution abstraction: 

 Continuous repetitions. Continuously repeated 
method invocations can be collapsed to one 
occurrence. Such repetitions mostly manifest 
themselves as loops. For instance, in a sequence of 
method calls EABCABCF (a letter represents a 
method call), the call sequence ABC is considered 
duplicated. Thus, only one occurrence of ABC is 
shown in the call graph. We can label the 
corresponding edge in the call graph with the 
number of repetitions. Noncontiguous repetitions 
are not collapsed because they may belong to 
different abstraction levels. 

 Depth of methods in a call chain. This type of 
abstraction relies on the depth threshold depth (an 
integer specified by the user). Methods whose 
nesting depths in the call chain are deeper than this 
threshold can be collapsed. For instance, given 
depth =3, the methods with a depth of 4 or more are 
collapsed, and not shown in the abstracted 
scenario. Low-level methods provide detailed 

information for high-level abstract events and can 
be unfolded if the user lowers the abstraction level.  

 Short call chains. A long call chain including 
more method invocations may represent a 
significant function of a program. SoftLink uses 
parameter length as a threshold to specify the 
minimum length of call chains. Method 
invocations with call chains shorter than length are 
pruned. SoftLink abstracts the call graph by 
traversing it and collapse methods according to the 
customizable parameters depth and length.  

5. SOFTLINK 

5.1 Overview 

Figure 8 shows the interface of SoftLink that includes 
three views: a 3D correlation view, a modulation view, 
and a source code view. The controls of SoftLink are on 
the menu bar. The user can use the file menu to import 
trace logs and specify the number of executions to be 
correlated. The action menu includes commands for 
specifying trace abstraction levels and constructing 
correlations. SoftLink first loads the selected plain-text 
trace files and transforms the files into call graphs in 
GraphML. It trims the call graphs based on the 
abstraction parameters set by the user. Call graphs are 
displayed on individual 2D planes, similar to sequence 

Figure 8: Three views of SoftLink. 

3D correlation view 

Source code view 

Modulation view 
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diagrams. Then, the correlations are visualized in the 
3D correlation view. The 3D scene is automatically 
rendered when the user changes the abstraction level.  

5.2 Views in SoftLink 

The 3D correlation view is built using Java3D. Each 
brown sphere represents an object. Green spheres 
represent methods. Horizontal green lines indicate the 
calling relationship between methods. Purple lines 
represent the correlations between two executions. 
These colors are selected to achieve some contrast 
against the background. This 3D scene provides users 
with multiple viewpoints to observe the relationship 
between executions. Users can choose to observe the 
differences or commonalities.  

The modulation view shows the hierarchical 
packaging structure of the program in a force-directed 
layout using the E-spring Algorithm [24]. High-level 
organizations of system modules represent the 
composition of a system and are commonly visualized 
using the tree structure in a node-link graphical format. 
Each sub-package is a child node of its parent package, 
while tree leaves represent files. This modulation view 
gives developers an overview of the program structure. 

The source code view provides a fast access to 
methods in the source file corresponding to the visual 

entity that the user is interested in. Having spotted 
desired information in the 3D visual representation, the 
user might need to check the corresponding source code. 
The source code view of SoftLink is synchronized with 
the visual representation in the 3D correlation view by 
highlighting the queried method in red. The file path of 
the searched method is shown in the status bar in the 
source code view. 

5.3 Iterative Multi-level Nested Visualization 

5.3.1 Zooming and Rotatable Scene 

SoftLink provides efficient interaction and navigation 
capabilities. In the current implementation, mouse is 
used for picking and rotating individual planes and 
visual objects in the 3D correlation view. SoftLink 
allows the user to move or rotate each single plane to 
any angle around any axis in 3D space. The keyboard is 
used to control the entire 3D scene, such as zooming, 
rotating, and moving the user’s viewpoint. To provide 
customizable views, when the viewpoint moves, each 
individual plane in the scene can be adjusted 
accordingly to the viewpoint.  

5.3.2 Iterative Multi-level Nested Visualization 

Program execution is hard to visualize if all the 
method invocations need to be displayed. Even if only 
a portion of a software system is executed, the collected 

POPUP PLANE 

Figure 9: Visual representation of correlations between two executions. 

OBJECT 

CORRELATION 

METHOD CALL 
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traces can be millions of lines, making it 
incomprehensible. To address this limitation, SoftLink 
utilizes multi-level abstraction and iterative drill-down 
visualization as in Figure 9. When the user clicks a 
visual object representing a method, the nested 
interactions within that method are shown in a popup 
plane attached to the clicked method. Iteratively, the 
visual objects on the newly popped plane can also be 
unfolded upon the user’s click. By drilling down 
through multiple planes, the user can get more detailed 
information. This capability is particularly suitable for 
a system equipped with an eye-tracker [22].  

6. Case Study 

We applied ViBERT on an industrial software 
package, Joda-Time [4], a Java date and time library. 
Joda-Time 1.6.2 has about 4615 classes in the source 
code, and 4080 classes in the testing code. We select a 
number of real bugs detected and fixed in the 
development process of Joda-Time. 

Both BERT and ViBERT focus on the changes 
between two adjacent revisions, we select two revisions 
of Joda-Time to simulate the regression testing. 
Suppose revision ri fixes a bug in revision rj, we can 
interpret that revision rj introduces the bug in revision 
ri, and use this bug to simulate a real regression fault. 
We apply ViBERT to identify the regression faults in 
the changes between revisions of the program.  

The Subversion repository[1] of Joda-Time contains 
about 1610 revisions. We search the history for the 
revisions that have fixed bugs in previous revisions. 156 
version pairs <ri, rj> are found, where revision ri fixes 
certain bugs in revision rj. Finding regression faults in a 
software’s history is time consuming, requiring a 
manual process: 

(1) Search the revision history for a bug that has been 
fixed. 

(2) Locate the revision and the source code where the 
bug first appears. 

(3) Examine whether the interface of the source code 
has been changed between the revision that introduces 
the bug and the revision before it. If the interface is not 
changed, then the bug is considered a regression fault 
that was introduced by the new revision. 

The selected revision pair is <r1576, r1577>. 
Revision r1577 fixes a bug in the method 
AbstractDuration.toString() in revision r1576. This 
method produces wrong output for negative inputs. 
Putting these two revisions in a regression testing 
setting, we take revision r1577 as the old version 
without the bug, and revision r1576 as the new version 
that introduces bugs. 

To catch the bug using regression testing, developers 
first study the changes the new version has made to the 
source code, and then create test cases targeting the 
changes. A test suite containing nine JUnit test cases for 
the method AbstractDuration.toString() is defined as 

shown in Figure 10: 

public void testToString() { 
01    assertEquals("PT0S",  

                             new Duration(0L).toString()); 
02    assertEquals("PT10S",  

                          new Duration(10000L).toString()); 
03    assertEquals("PT1S", 

                           new Duration(1000L).toString()); 
04    assertEquals("PT12.345S", 

                          new Duration(12345L).toString()); 
05    assertEquals("PT-12.345S", 

                        new Duration(-12345L).toString()); 
06    assertEquals("PT-1.123S", 

                         new Duration(-1123L).toString()); 
07    assertEquals("PT-0.123S", 

                         new Duration(-123L).toString()); 
08    assertEquals("PT-0.012S", 

                             new Duration(-12L).toString()); 
09    assertEquals("PT-0.001S", 

                             new Duration(-1L).toString()); 
} 
Figure 10: Test cases in Joda-Time for Duration.toString(). 

 

We first run the existing JUnit test suite on the new 
version of the program, the test suspends at test case 07, 
indicating that the actual output is not expected. By 
observing the changes that the new version has made to 
the source code, we can conclude that the program 
behavior starts to differ when the length of the output is 
greater than 8 (or 7 if the output is a positive number). 
In the given test suite, however, starting from test case 
04, the lengths of the expected outputs are all greater 
than 8. The program actually behaves differently since 
test case 04. Therefore, although running the existing 
test suite can eventually capture the bug, it could have 
revealed the change earlier (from test case 04 instead of 
test case 07). 

By exploring the behavioral variations of these two 
revisions, ViBERT intends to detect this potential 
problem, and alerts developers with visual hints. We 
run the test cases on both versions and compare their 
differences. As an enhancement to behavioral 
regression testing, we use visual representations to 
show behavioral difference. We obtain the execution 
traces by embedding AspectJ instrumentations into 
JUnit testing code. Then, ViBERT visualizes the 
correlations between the two executions. Figure 11 
shows the result in SoftLink. The left plane represents 
revision r1577, and the right one represents r1576. The 
numbers correspond to the test cases in Figure 10. 

The left plane successfully runs all the test cases. The 
right plane shows only 7 test cases, because the test 
stops at test case 07. We notice that since test case 04, 
two executions exhibit different behaviors due to the 
changes to the code. The method calls to 
“appendPaddedInteger” in the right panel (revision: 
r1576) do not exist in the left panel (revision: r1577). 
Via visual inspection, developers can identify the 
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influence of the changes to the program behavior, and 
further analyze whether those changes introduce new 
errors. 

As shown in the case study, ViBERT shows the 
differences between two executions using visual 
representations. It displays where are the differences 
and the context of the differences in the execution. In 
this experiment, we use one revision pair as one 
example. Other revision pair can be compared in a 
similar fashion. In software testing, there are many test 
coverage criteria and metrics. It is worthwhile to note 
that as Behavior Regression Testing focuses only on 
comparing method invocations in program executions, 
not all types of program errors can be identified by 
behavior regression testing. 

7. Related Work 

7.1 Program Behavior Comprehension 

Numerous researchers have focused on visualizing 
program executions. Comprehensive surveys of 
dynamic analysis and software visualization [15][35] 
are available. Traditionally program behaviors are 
represented as node-link diagrams in a two-dimensional 
space. Examples include UML sequence diagrams [10], 
space-time diagrams, and call graphs [42].  

Researchers utilize essential visual elements such as 
color, shape, and a variety of visual layouts to represent 
software information. Popular layouts include trees (e.g. 
tree map [34][39]), tables, graphs and diagrams.  

TraceVis [30] visualizes executed program instructions 
by sequentially displaying microprocessor instructions 
in a 2D plane. It supports queries, different levels of 
zooming, and annotations on colorful blocks. 
GAMMATELLA [27] visualizes executions in three 
levels in 2D: a file level represented in a miniaturized 
view, a system level using a tree map, and a statement 
level.  MetropoIJS [34] visualizes static and dynamic 
aspects of largescale program written in Javascript with 
Treemaps. These approaches, however, focus on the 
visualization of single execution scenario and do not 
support a comparison of different program executions. 
Our study complements previous research by applying 
existing successful layouts on individual 2D planes in 
SoftLink.  

Apart from 2D visualization, more 3D software 
visualization environments are built through virtual 
realities. Metaphors such as cities were used to 
represent software systems [11][36].  Fittkau et al. [20] 
designed controlled experiments to compare the trace 
visualization tools EXTRAVIS [14] and ExplorViz in 
program comprehension tasks. EXTRAVIS uses 
circular bundling and a massive sequence view, and 
ExplorViz uses the city metaphors. Scalability in 
software visualization are commonly addressed by 
using multiple levels of abstraction [19][41].  

7.2 Regression Testing and Visualization 

Regression testing aims at uncovering new errors 
after changes are made to a software system. The 
increasing size of software systems makes thorough 
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Figure 11: ViBERT on revision pair <r1577, r1576> of Joda-Time. The left plane visualizes revision r1577, and the right one presents r1576. 
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regression testing a costly endeavor. In addition to 
traditional test selection and prioritization techniques, 
researchers have applied visual analytics to regression 
testing.  Engström et al. [18] utilize a heat map (mosaic 
visualization) to show test history and test covered 
items. Chen and Ince [13] design a tabular visual 
representation of regression test results. Different colors 
are assigned to the blocks on the table and fisheye 
enlarges the rows of users’ interest.  

BERT [28][37] is a differential testing technique that 
identifies behavioral differences between two versions 
of a program through automatically generated test cases 
and dynamic analysis. Different from previous testing 
work, ViBERT compares dynamic program behavior 
and complements the BERT technique with a visual 
tool SoftLink.  

8. Conclusion and Future work 

Regression testing aims at identifying unnoticed 
faults caused by changes to software. Behavioral 
regression testing uses dynamic analysis to compare 
new and old versions of a program in regression testing. 
This paper has proposed ViBERT, a visual approach to 
comparing program behavior. Specifically, we had built 
a 3D environment that allows developers to view the 
correlations and differences between two versions of 
program executions. In contrast to other visualization 
tools, our approach focuses on consecutive behavior 
comparison. It helps users to interpret the behavioral 
differences within the context of the executions.  

Our future work is to conduct a usability study and 
gather more feedbacks from users. We also plan to 
integrate this environment with popular IDEs, such as 
Eclipse and IntelliJ. More experiments on larger 
software systems will also be conducted. Another 
possible extension is that the viewpoint-oriented 
representation can be enhanced with an eye tracker. The 
position of the pupil in the eye-tracking controller 
screen is mapped to that in the visual space. We can use 
the eye tracker to capture the user’s visual focus, and as 
the viewer’s focus moves, the orientations of planes will 
be automatically updated accordingly. 
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